Documentation Verification Report

Defs

πŸ“ Source: FLT/AutomorphicForm/QuaternionAlgebra/Defs.lean

Statistics

MetricCount
DefinitionsDfx, WeightTwoAutomorphicForm, add, addCommGroup, distribMulAction, group_smul, instAdd, instCoeFunForallDfx, instNeg, instSMul, instSMulDfx, instZero, module, mulAction, neg, ring_smul, toFun, zero, WeightTwoAutomorphicFormOfLevel, instAddCommGroup, instCoeFunForallDfx, instModule, toFun, incl₁, inclβ‚‚, instCommRingFiniteAdeleRingRingOfIntegers_fLT, instRingTensorProductFiniteAdeleRingRingOfIntegers_fLT
27
TheoremsisOpen_smul, add_apply, ext, ext_iff, group_smul_apply, instContinuousConstSMulConjActOfContinuousMul, instSMulCommClassDfx, left_invt, neg_apply, right_invt, smul_apply, trivial_central_char, zero_apply, ext, ext_iff, left_invt, right_invt, range_inclβ‚‚_le_center
18
Total45

ConjAct

Theorems

NameKindAssumesProvesValidatesDepends On
isOpen_smul πŸ“–β€”β€”β€”β€”TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.instContinuousConstSMulConjActOfContinuousMul

TotallyDefiniteQuaternionAlgebra

Definitions

NameCategoryTheorems
Dfx πŸ“–CompOp
8 mathmath: WeightTwoAutomorphicForm.right_invt, WeightTwoAutomorphicForm.trivial_central_char, WeightTwoAutomorphicForm.instSMulCommClassDfx, WeightTwoAutomorphicForm.group_smul_apply, WeightTwoAutomorphicFormOfLevel.right_invt, range_inclβ‚‚_le_center, WeightTwoAutomorphicFormOfLevel.left_invt, WeightTwoAutomorphicForm.left_invt
WeightTwoAutomorphicForm πŸ“–CompData
9 mathmath: WeightTwoAutomorphicForm.smul_apply, WeightTwoAutomorphicForm.neg_apply, WeightTwoAutomorphicForm.zero_apply, WeightTwoAutomorphicForm.HeckeOperator.U_apply, WeightTwoAutomorphicForm.instSMulCommClassDfx, WeightTwoAutomorphicForm.group_smul_apply, WeightTwoAutomorphicForm.HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, WeightTwoAutomorphicForm.HeckeOperator.U_mul_aux, WeightTwoAutomorphicForm.add_apply
WeightTwoAutomorphicFormOfLevel πŸ“–CompOp
5 mathmath: WeightTwoAutomorphicForm.HeckeOperator.U_comm, WeightTwoAutomorphicForm.HeckeOperator.U_apply, WeightTwoAutomorphicForm.finiteDimensional, WeightTwoAutomorphicForm.HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, WeightTwoAutomorphicForm.HeckeOperator.U_mul
incl₁ πŸ“–CompOp
2 mathmath: WeightTwoAutomorphicFormOfLevel.left_invt, WeightTwoAutomorphicForm.left_invt
inclβ‚‚ πŸ“–CompOp
2 mathmath: WeightTwoAutomorphicForm.trivial_central_char, range_inclβ‚‚_le_center
instCommRingFiniteAdeleRingRingOfIntegers_fLT πŸ“–CompOp
15 mathmath: WeightTwoAutomorphicForm.HeckeOperator.unipotent_mul_diag_image_finite, WeightTwoAutomorphicForm.U1_compact, WeightTwoAutomorphicForm.right_invt, WeightTwoAutomorphicForm.HeckeOperator.bijOn_unipotent_mul_diagU1_U1diagU1, WeightTwoAutomorphicForm.trivial_central_char, WeightTwoAutomorphicForm.HeckeOperator.U_apply, WeightTwoAutomorphicForm.HeckeOperator.unipotent_mul_diag_inj, WeightTwoAutomorphicForm.group_smul_apply, WeightTwoAutomorphicForm.HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, WeightTwoAutomorphicFormOfLevel.right_invt, WeightTwoAutomorphicForm.HeckeOperator.U_mul_aux, range_inclβ‚‚_le_center, WeightTwoAutomorphicForm.U1_open, WeightTwoAutomorphicFormOfLevel.left_invt, WeightTwoAutomorphicForm.left_invt
instRingTensorProductFiniteAdeleRingRingOfIntegers_fLT πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
range_inclβ‚‚_le_center πŸ“–mathematicalβ€”Dfx
instCommRingFiniteAdeleRingRingOfIntegers_fLT
inclβ‚‚
β€”β€”

TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
addCommGroup πŸ“–CompOp
3 mathmath: HeckeOperator.U_apply, HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, HeckeOperator.U_mul_aux
distribMulAction πŸ“–CompOpβ€”
group_smul πŸ“–CompOpβ€”
instAdd πŸ“–CompOp
1 mathmath: add_apply
instCoeFunForallDfx πŸ“–CompOpβ€”
instNeg πŸ“–CompOp
1 mathmath: neg_apply
instSMul πŸ“–CompOp
2 mathmath: smul_apply, instSMulCommClassDfx
instSMulDfx πŸ“–CompOp
5 mathmath: HeckeOperator.U_apply, instSMulCommClassDfx, group_smul_apply, HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, HeckeOperator.U_mul_aux
instZero πŸ“–CompOp
1 mathmath: zero_apply
module πŸ“–CompOpβ€”
mulAction πŸ“–CompOpβ€”
neg πŸ“–CompOpβ€”
ring_smul πŸ“–CompOpβ€”
toFun πŸ“–CompOp
9 mathmath: smul_apply, right_invt, trivial_central_char, neg_apply, zero_apply, group_smul_apply, add_apply, ext_iff, left_invt
zero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_apply πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm
instAdd
β€”β€”
ext πŸ“–β€”toFunβ€”β€”β€”
ext_iff πŸ“–mathematicalβ€”toFunβ€”ext
group_smul_apply πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm
instSMulDfx
TotallyDefiniteQuaternionAlgebra.instCommRingFiniteAdeleRingRingOfIntegers_fLT
β€”β€”
instContinuousConstSMulConjActOfContinuousMul πŸ“–β€”β€”β€”β€”β€”
instSMulCommClassDfx πŸ“–mathematicalβ€”TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm
instSMulDfx
instSMul
β€”ext
left_invt πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.instCommRingFiniteAdeleRingRingOfIntegers_fLT
TotallyDefiniteQuaternionAlgebra.incl₁
β€”β€”
neg_apply πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm
instNeg
β€”β€”
right_invt πŸ“–mathematicalβ€”TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.instCommRingFiniteAdeleRingRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
toFun
β€”β€”
smul_apply πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm
instSMul
β€”β€”
trivial_central_char πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.instCommRingFiniteAdeleRingRingOfIntegers_fLT
TotallyDefiniteQuaternionAlgebra.inclβ‚‚
β€”β€”
zero_apply πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm
instZero
β€”β€”

TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicFormOfLevel

Definitions

NameCategoryTheorems
instAddCommGroup πŸ“–CompOp
5 mathmath: TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_comm, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_apply, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.finiteDimensional, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_mul
instCoeFunForallDfx πŸ“–CompOpβ€”
instModule πŸ“–CompOp
5 mathmath: TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_comm, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_apply, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.finiteDimensional, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_apply_eq_finsum_unipotent_mul_diag_image, TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.HeckeOperator.U_mul
toFun πŸ“–CompOp
3 mathmath: ext_iff, right_invt, left_invt

Theorems

NameKindAssumesProvesValidatesDepends On
ext πŸ“–β€”toFunβ€”β€”TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.ext
ext_iff πŸ“–mathematicalβ€”toFunβ€”ext
left_invt πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.instCommRingFiniteAdeleRingRingOfIntegers_fLT
TotallyDefiniteQuaternionAlgebra.incl₁
β€”TotallyDefiniteQuaternionAlgebra.WeightTwoAutomorphicForm.left_invt
right_invt πŸ“–mathematicalβ€”toFun
TotallyDefiniteQuaternionAlgebra.Dfx
TotallyDefiniteQuaternionAlgebra.instCommRingFiniteAdeleRingRingOfIntegers_fLT
β€”β€”

---

← Back to Index