Documentation Verification Report

Hurwitz

πŸ“ Source: FLT/Data/Hurwitz.lean

Statistics

MetricCount
DefinitionsHurwitz, add, fromQuaternion, im_i, im_o, im_oi, instAdd, instIntCast, instMul, instNatCast, instNeg, instOne, instPowNat, instSMulInt, instSMulNat, instSub, instZero, mul, neg, norm, one, re, ring, starRing, toQuaternion, zero, termπ“ž
27
TheoremscastDef_negSucc, castDef_ofNat, add_im_i, add_im_o, add_im_oi, add_re, coe_norm, exists_near, ext, ext_iff, fromQuaternion_injOn, instCharZero, intCast_im_i, intCast_im_o, intCast_im_oi, intCast_re, leftInvOn_toQuaternion_fromQuaternion, leftInverse_fromQuaternion_toQuaternion, left_ideal_princ, mul_im_i, mul_im_o, mul_im_oi, mul_re, natCast_im_i, natCast_im_o, natCast_im_oi, natCast_re, neg_im_i, neg_im_o, neg_im_oi, neg_re, normSq_toQuaternion, norm_eq_mul_conj, norm_eq_zero, norm_mul, norm_nonneg, norm_one, norm_zero, o_mul_i, one_im_i, one_im_o, one_im_oi, one_re, preserves_castDef, preserves_npowRec, preserves_nsmulRec, preserves_unaryCast, preserves_zsmul, quot_rem, star_eq, star_im_i, star_im_o, star_im_oi, star_re, toQuaternion_add, toQuaternion_eq_zero_iff, toQuaternion_injective, toQuaternion_intCast, toQuaternion_mul, toQuaternion_natCast, toQuaternion_ne_zero_iff, toQuaternion_neg, toQuaternion_npow, toQuaternion_nsmul, toQuaternion_one, toQuaternion_star, toQuaternion_sub, toQuaternion_zero, toQuaternion_zsmul, zero_im_i, zero_im_o, zero_im_oi, zero_re
73
Total100

Hurwitz

Definitions

NameCategoryTheorems
add πŸ“–CompOpβ€”
fromQuaternion πŸ“–CompOp
4 mathmath: leftInverse_fromQuaternion_toQuaternion, leftInvOn_toQuaternion_fromQuaternion, fromQuaternion_injOn, star_eq
im_i πŸ“–CompOp
13 mathmath: mul_re, star_im_i, mul_im_oi, natCast_im_i, mul_im_i, coe_norm, zero_im_i, intCast_im_i, mul_im_o, add_im_i, ext_iff, neg_im_i, one_im_i
im_o πŸ“–CompOp
14 mathmath: neg_im_o, mul_re, mul_im_oi, mul_im_i, zero_im_o, star_im_o, one_im_o, coe_norm, star_re, intCast_im_o, mul_im_o, natCast_im_o, add_im_o, ext_iff
im_oi πŸ“–CompOp
14 mathmath: mul_re, mul_im_oi, mul_im_i, star_im_oi, neg_im_oi, intCast_im_oi, add_im_oi, coe_norm, star_re, zero_im_oi, mul_im_o, natCast_im_oi, one_im_oi, ext_iff
instAdd πŸ“–CompOp
6 mathmath: add_im_oi, add_re, toQuaternion_add, add_im_i, add_im_o, quot_rem
instIntCast πŸ“–CompOp
6 mathmath: intCast_im_oi, toQuaternion_intCast, intCast_im_o, intCast_im_i, norm_eq_mul_conj, intCast_re
instMul πŸ“–CompOp
9 mathmath: mul_re, o_mul_i, mul_im_oi, mul_im_i, toQuaternion_mul, mul_im_o, norm_eq_mul_conj, norm_mul, quot_rem
instNatCast πŸ“–CompOp
5 mathmath: natCast_re, natCast_im_i, natCast_im_oi, natCast_im_o, toQuaternion_natCast
instNeg πŸ“–CompOp
5 mathmath: neg_im_o, neg_im_oi, neg_re, toQuaternion_neg, neg_im_i
instOne πŸ“–CompOp
7 mathmath: HurwitzRatHat.canonicalForm, one_im_o, toQuaternion_one, one_im_oi, one_re, norm_one, one_im_i
instPowNat πŸ“–CompOp
1 mathmath: toQuaternion_npow
instSMulInt πŸ“–CompOp
1 mathmath: toQuaternion_zsmul
instSMulNat πŸ“–CompOp
1 mathmath: toQuaternion_nsmul
instSub πŸ“–CompOp
1 mathmath: toQuaternion_sub
instZero πŸ“–CompOp
8 mathmath: toQuaternion_zero, norm_zero, zero_im_o, zero_im_i, zero_im_oi, norm_eq_zero, toQuaternion_eq_zero_iff, zero_re
mul πŸ“–CompOpβ€”
neg πŸ“–CompOpβ€”
norm πŸ“–CompOp
9 mathmath: norm_zero, coe_norm, normSq_toQuaternion, norm_eq_mul_conj, norm_eq_zero, norm_nonneg, norm_one, norm_mul, quot_rem
one πŸ“–CompOpβ€”
re πŸ“–CompOp
13 mathmath: natCast_re, mul_re, mul_im_oi, mul_im_i, neg_re, add_re, coe_norm, star_re, mul_im_o, one_re, ext_iff, zero_re, intCast_re
ring πŸ“–CompOp
10 mathmath: star_im_i, toQuaternion_star, left_ideal_princ, star_im_oi, HurwitzRatHat.canonicalForm, star_im_o, star_re, norm_eq_mul_conj, instCharZero, star_eq
starRing πŸ“–CompOp
7 mathmath: star_im_i, toQuaternion_star, star_im_oi, star_im_o, star_re, norm_eq_mul_conj, star_eq
toQuaternion πŸ“–CompOp
19 mathmath: exists_near, toQuaternion_sub, toQuaternion_zero, toQuaternion_zsmul, toQuaternion_star, leftInverse_fromQuaternion_toQuaternion, toQuaternion_mul, toQuaternion_nsmul, toQuaternion_npow, toQuaternion_intCast, toQuaternion_add, normSq_toQuaternion, toQuaternion_neg, toQuaternion_one, leftInvOn_toQuaternion_fromQuaternion, star_eq, toQuaternion_injective, toQuaternion_eq_zero_iff, toQuaternion_natCast
zero πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
add_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instAdd
β€”β€”
add_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instAdd
β€”β€”
add_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instAdd
β€”β€”
add_re πŸ“–mathematicalβ€”re
Hurwitz
instAdd
β€”β€”
coe_norm πŸ“–mathematicalβ€”norm
re
im_o
im_oi
im_i
β€”norm.eq_1
exists_near πŸ“–mathematicalβ€”toQuaternionβ€”leftInvOn_toQuaternion_fromQuaternion
ext πŸ“–β€”re
im_o
im_i
im_oi
β€”β€”β€”
ext_iff πŸ“–mathematicalβ€”re
im_o
im_i
im_oi
β€”ext
fromQuaternion_injOn πŸ“–mathematicalβ€”Hurwitz
fromQuaternion
β€”leftInvOn_toQuaternion_fromQuaternion
instCharZero πŸ“–mathematicalβ€”Hurwitz
ring
β€”natCast_re
natCast_im_o
natCast_im_i
natCast_im_oi
intCast_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instIntCast
β€”natCast_im_i
intCast_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instIntCast
β€”natCast_im_o
intCast_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instIntCast
β€”natCast_im_oi
intCast_re πŸ“–mathematicalβ€”re
Hurwitz
instIntCast
β€”natCast_re
leftInvOn_toQuaternion_fromQuaternion πŸ“–mathematicalβ€”Hurwitz
toQuaternion
fromQuaternion
β€”β€”
leftInverse_fromQuaternion_toQuaternion πŸ“–mathematicalβ€”Hurwitz
fromQuaternion
toQuaternion
β€”β€”
left_ideal_princ πŸ“–mathematicalβ€”Hurwitz
ring
β€”norm_nonneg
quot_rem
mul_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instMul
re
im_o
im_oi
β€”β€”
mul_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instMul
re
im_oi
im_i
β€”β€”
mul_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instMul
re
im_i
im_o
β€”β€”
mul_re πŸ“–mathematicalβ€”re
Hurwitz
instMul
im_o
im_i
im_oi
β€”β€”
natCast_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instNatCast
β€”β€”
natCast_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instNatCast
β€”β€”
natCast_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instNatCast
β€”β€”
natCast_re πŸ“–mathematicalβ€”re
Hurwitz
instNatCast
β€”β€”
neg_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instNeg
β€”β€”
neg_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instNeg
β€”β€”
neg_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instNeg
β€”β€”
neg_re πŸ“–mathematicalβ€”re
Hurwitz
instNeg
β€”β€”
normSq_toQuaternion πŸ“–mathematicalβ€”toQuaternion
norm
β€”toQuaternion_star
toQuaternion_mul
norm_eq_mul_conj
toQuaternion_intCast
norm_eq_mul_conj πŸ“–mathematicalβ€”Hurwitz
instIntCast
norm
instMul
ring
starRing
β€”ext
intCast_re
intCast_im_o
intCast_im_i
intCast_im_oi
norm_eq_zero πŸ“–mathematicalβ€”norm
Hurwitz
instZero
β€”coe_norm
ext
norm_zero
norm_mul πŸ“–mathematicalβ€”norm
Hurwitz
instMul
β€”instCharZero
norm_eq_mul_conj
norm_nonneg πŸ“–mathematicalβ€”normβ€”coe_norm
norm_one πŸ“–mathematicalβ€”norm
Hurwitz
instOne
β€”β€”
norm_zero πŸ“–mathematicalβ€”norm
Hurwitz
instZero
β€”β€”
o_mul_i πŸ“–mathematicalβ€”Hurwitz
instMul
β€”ext
one_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instOne
β€”β€”
one_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instOne
β€”β€”
one_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instOne
β€”β€”
one_re πŸ“–mathematicalβ€”re
Hurwitz
instOne
β€”β€”
preserves_castDef πŸ“–β€”β€”β€”β€”Int.castDef_ofNat
Int.castDef_negSucc
preserves_npowRec πŸ“–β€”β€”β€”β€”β€”
preserves_nsmulRec πŸ“–β€”β€”β€”β€”β€”
preserves_unaryCast πŸ“–β€”β€”β€”β€”β€”
preserves_zsmul πŸ“–β€”β€”β€”β€”β€”
quot_rem πŸ“–mathematicalβ€”Hurwitz
instAdd
instMul
norm
β€”toQuaternion_ne_zero_iff
exists_near
normSq_toQuaternion
toQuaternion_sub
toQuaternion_mul
star_eq πŸ“–mathematicalβ€”Hurwitz
ring
starRing
fromQuaternion
toQuaternion
β€”leftInverse_fromQuaternion_toQuaternion
star_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
ring
starRing
β€”β€”
star_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
ring
starRing
β€”β€”
star_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
ring
starRing
β€”β€”
star_re πŸ“–mathematicalβ€”re
Hurwitz
ring
starRing
im_o
im_oi
β€”β€”
toQuaternion_add πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instAdd
β€”β€”
toQuaternion_eq_zero_iff πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instZero
β€”toQuaternion_injective
toQuaternion_zero
toQuaternion_injective πŸ“–mathematicalβ€”Hurwitz
toQuaternion
β€”leftInverse_fromQuaternion_toQuaternion
toQuaternion_intCast πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instIntCast
β€”preserves_castDef
toQuaternion_natCast
toQuaternion_neg
toQuaternion_mul πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instMul
β€”β€”
toQuaternion_natCast πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instNatCast
β€”preserves_unaryCast
toQuaternion_zero
toQuaternion_one
toQuaternion_add
toQuaternion_ne_zero_iff πŸ“–β€”β€”β€”β€”toQuaternion_injective
toQuaternion_zero
toQuaternion_neg πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instNeg
β€”β€”
toQuaternion_npow πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instPowNat
β€”preserves_npowRec
toQuaternion_one
toQuaternion_mul
toQuaternion_nsmul πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instSMulNat
β€”preserves_nsmulRec
toQuaternion_zero
toQuaternion_add
toQuaternion_one πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instOne
β€”β€”
toQuaternion_star πŸ“–mathematicalβ€”toQuaternion
Hurwitz
ring
starRing
β€”β€”
toQuaternion_sub πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instSub
β€”toQuaternion_neg
toQuaternion_add
toQuaternion_zero πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instZero
β€”β€”
toQuaternion_zsmul πŸ“–mathematicalβ€”toQuaternion
Hurwitz
instSMulInt
β€”preserves_zsmul
toQuaternion_nsmul
toQuaternion_neg
zero_im_i πŸ“–mathematicalβ€”im_i
Hurwitz
instZero
β€”β€”
zero_im_o πŸ“–mathematicalβ€”im_o
Hurwitz
instZero
β€”β€”
zero_im_oi πŸ“–mathematicalβ€”im_oi
Hurwitz
instZero
β€”β€”
zero_re πŸ“–mathematicalβ€”re
Hurwitz
instZero
β€”β€”

Hurwitz.Int

Theorems

NameKindAssumesProvesValidatesDepends On
castDef_negSucc πŸ“–β€”β€”β€”β€”β€”
castDef_ofNat πŸ“–β€”β€”β€”β€”β€”

(root)

Definitions

NameCategoryTheorems
Hurwitz πŸ“–CompData
60 mathmath: Hurwitz.natCast_re, Hurwitz.neg_im_o, Hurwitz.mul_re, Hurwitz.star_im_i, Hurwitz.o_mul_i, Hurwitz.mul_im_oi, Hurwitz.natCast_im_i, Hurwitz.toQuaternion_sub, Hurwitz.toQuaternion_zero, Hurwitz.toQuaternion_zsmul, Hurwitz.mul_im_i, Hurwitz.toQuaternion_star, Hurwitz.left_ideal_princ, Hurwitz.star_im_oi, Hurwitz.neg_im_oi, Hurwitz.leftInverse_fromQuaternion_toQuaternion, Hurwitz.intCast_im_oi, Hurwitz.neg_re, Hurwitz.toQuaternion_mul, Hurwitz.norm_zero, HurwitzRatHat.canonicalForm, Hurwitz.zero_im_o, Hurwitz.add_im_oi, Hurwitz.add_re, Hurwitz.star_im_o, Hurwitz.toQuaternion_nsmul, Hurwitz.one_im_o, Hurwitz.toQuaternion_npow, Hurwitz.toQuaternion_intCast, Hurwitz.star_re, Hurwitz.toQuaternion_add, Hurwitz.zero_im_i, Hurwitz.zero_im_oi, Hurwitz.intCast_im_o, Hurwitz.intCast_im_i, Hurwitz.mul_im_o, Hurwitz.toQuaternion_neg, Hurwitz.norm_eq_mul_conj, Hurwitz.add_im_i, Hurwitz.toQuaternion_one, Hurwitz.natCast_im_oi, Hurwitz.norm_eq_zero, Hurwitz.leftInvOn_toQuaternion_fromQuaternion, Hurwitz.instCharZero, Hurwitz.natCast_im_o, Hurwitz.fromQuaternion_injOn, Hurwitz.add_im_o, Hurwitz.one_im_oi, Hurwitz.one_re, Hurwitz.star_eq, Hurwitz.norm_one, Hurwitz.toQuaternion_injective, Hurwitz.norm_mul, Hurwitz.toQuaternion_eq_zero_iff, Hurwitz.zero_re, Hurwitz.neg_im_i, Hurwitz.toQuaternion_natCast, Hurwitz.intCast_re, Hurwitz.quot_rem, Hurwitz.one_im_i
termπ“ž πŸ“–CompOpβ€”

---

← Back to Index