Documentation Verification Report

BaseChange

πŸ“ Source: FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean

Statistics

MetricCount
Definitionsalgebra, baseChangeAdeleAlgEquiv, baseChangeAdeleContinuousAlgEquiv, baseChangeAlgEquiv, baseChangeContinuousAlgEquiv, baseChangeLinearEquiv, mapRingHom, mapSemialgHom, restrictedProduct_pi_equiv, restrictedProduct_prod_equiv, restrictedProduct_tensorProduct_equiv_restrictedProduct_prod, tensorEquivRestrictedProduct, tensorEquivTensor, baseChangeAlgebra, baseChangeIntegerAlgebra, instModuleFiniteAdeleRingRestrictedProductHeightOneSpectrumForallAdicCompletionValEqComapCoeSubmoduleSubtypeMemValuationSubringAdicCompletionIntegersPiAdicIntegerSubmoduleCofinite, instModuleSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegersForallValHeightOneSpectrumEqComap, instModuleSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers_fLT, instMulActionSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers_fLT, instSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegersForallValHeightOneSpectrumEqComap, instSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers_fLT, piAdicIntegerSubmodule
22
TheoremsalgebraMap_apply, baseChangeLinearEquiv_tmul, baseChange_bijective, mapSemialgHom_apply, mapSemialgHom_continuous, restrictedProduct_pi_isModuleTopology, restrictedProduct_prod_equiv_apply, restrictedProduct_tensorProduct_equiv_restrictedProduct_prod_apply, tensorEquivRestrictedProduct_tmul, tensorEquivTensor_tmul, algebraMap_apply, cofinite_mapsTo_adicCompletionComapSemialgHom, instFiniteFiniteAdeleRing_fLT, instIsModuleTopologyFiniteAdeleRing_fLT, instIsScalarTowerFiniteAdeleRing_fLT, instIsScalarTowerFiniteAdeleRing_fLT_1, range_adicCompletionTensorIntegerCoe_eq_lTensorRestriction, tendsTo_comap_cofinite
18
Total40

IsDedekindDomain

Definitions

NameCategoryTheorems
baseChangeAlgebra πŸ“–CompOp
36 mathmath: toMatrix_f, instLocallyCompactSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT, NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D𝔸quot_surjective, localcomponent_mulLeft, FiniteAdeleRing.tensorEquivTensor_tmul, instBorelSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT, algebraMap_apply, basis_eq_single_global, NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D𝔸quot_equivariant, localcomponent_mulRight, NumberField.AdeleRing.DivisionAlgebra.Aux.ringHaarChar_D𝔸, NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D𝔸quot_continuous, Rat.FiniteAdeleRing.padicEquiv_bijOn, NumberField.AdeleRing.DivisionAlgebra.Aux.smul_D𝔸_prodRight_symm, FiniteAdeleRing.baseChangeLinearEquiv_tmul, NumberField.AdeleRing.DivisionAlgebra.Aux.instBorelSpaceDf, NumberField.AdeleRing.DivisionAlgebra.Aux.instIsModuleTopologyRingOfIntegersProdDinfDf, Rat.FiniteAdeleRing.sub_mem_integralAdeles, NumberField.FiniteAdeleRing.tensor_isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, instIsTopologicalRingTensorProductFiniteAdeleRingRingOfIntegers_fLT, NumberField.AdeleRing.DivisionAlgebra.Aux.D𝔸_prodRight_units_cont, NumberField.AdeleRing.DivisionAlgebra.Aux.ringHaarChar_D𝔸_prodRight_units_aux, basis_repr_eq_global, NumberField.AdeleRing.DivisionAlgebra.Aux.rest₁_continuous, NumberField.AdeleRing.DivisionAlgebra.Aux.ringHaarChar_D𝔸_real_surjective, FiniteAdeleRing.Aux.f_commSq, NumberField.FiniteAdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, localcomponent_matrix, FiniteAdeleRing.Aux.f_g_local_global, basis_eq_global, instIsModuleTopologyFiniteAdeleRingRingOfIntegersTensorProduct_fLT, NumberField.AdeleRing.instBorelSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT, instIsScalarTowerFiniteAdeleRing_fLT, instIsScalarTowerFiniteAdeleRing_fLT_1, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact, NumberField.AdeleRing.DivisionAlgebra.Aux.Uf.spec
baseChangeIntegerAlgebra πŸ“–CompOp
4 mathmath: FiniteAdeleRing.tensorEquivTensor_tmul, FiniteAdeleRing.baseChangeLinearEquiv_tmul, FiniteAdeleRing.restrictedProduct_prod_equiv_apply, FiniteAdeleRing.tensorEquivRestrictedProduct_tmul
instModuleFiniteAdeleRingRestrictedProductHeightOneSpectrumForallAdicCompletionValEqComapCoeSubmoduleSubtypeMemValuationSubringAdicCompletionIntegersPiAdicIntegerSubmoduleCofinite πŸ“–CompOp
1 mathmath: FiniteAdeleRing.restrictedProduct_pi_isModuleTopology
instModuleSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegersForallValHeightOneSpectrumEqComap πŸ“–CompOp
1 mathmath: FiniteAdeleRing.restrictedProduct_pi_isModuleTopology
instModuleSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers_fLT πŸ“–CompOpβ€”
instMulActionSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers_fLT πŸ“–CompOpβ€”
instSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegersForallValHeightOneSpectrumEqComap πŸ“–CompOpβ€”
instSMulSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegers_fLT πŸ“–CompOpβ€”
piAdicIntegerSubmodule πŸ“–CompOp
1 mathmath: FiniteAdeleRing.restrictedProduct_pi_isModuleTopology

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply πŸ“–mathematicalβ€”baseChangeAlgebraβ€”β€”
cofinite_mapsTo_adicCompletionComapSemialgHom πŸ“–mathematicalβ€”HeightOneSpectrum.comap
SemialgHom
instAlgebraWithVal_fLT
instFunLike
HeightOneSpectrum.adicCompletionComapSemialgHom
β€”HeightOneSpectrum.adicCompletionComapSemialgHom.mapadicCompletionIntegers
instFiniteFiniteAdeleRing_fLT πŸ“–mathematicalβ€”BaseChange.algebraβ€”TensorProduct.RightActions.instFinite_fLT
instIsModuleTopologyFiniteAdeleRing_fLT πŸ“–mathematicalβ€”BaseChange.algebraβ€”FiniteAdeleRing.restrictedProduct_pi_isModuleTopology
instIsScalarTowerFiniteAdeleRing_fLT πŸ“–mathematicalβ€”baseChangeAlgebraβ€”β€”
instIsScalarTowerFiniteAdeleRing_fLT_1 πŸ“–mathematicalβ€”baseChangeAlgebra
BaseChange.algebra
β€”SemialgHom.commutes
range_adicCompletionTensorIntegerCoe_eq_lTensorRestriction πŸ“–mathematicalβ€”instAlgebraWithVal_fLT_1
HeightOneSpectrum.adicCompletionTensorIntegerCoe
RestrictedProduct.rangeLTensor
HeightOneSpectrum.integerSubmodule
β€”β€”
tendsTo_comap_cofinite πŸ“–mathematicalβ€”HeightOneSpectrum.comapβ€”HeightOneSpectrum.Extension.finite

IsDedekindDomain.BaseChange

Definitions

NameCategoryTheorems
algebra πŸ“–CompOp
5 mathmath: IsDedekindDomain.instFiniteFiniteAdeleRing_fLT, IsDedekindDomain.FiniteAdeleRing.baseChangeLinearEquiv_tmul, IsDedekindDomain.instIsModuleTopologyFiniteAdeleRing_fLT, IsDedekindDomain.instIsScalarTowerFiniteAdeleRing_fLT_1, algebraMap_apply

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_apply πŸ“–mathematicalβ€”algebra
IsDedekindDomain.HeightOneSpectrum.comap
IsDedekindDomain.HeightOneSpectrum.comap_algebra
β€”β€”

IsDedekindDomain.FiniteAdeleRing

Definitions

NameCategoryTheorems
baseChangeAdeleAlgEquiv πŸ“–CompOpβ€”
baseChangeAdeleContinuousAlgEquiv πŸ“–CompOpβ€”
baseChangeAlgEquiv πŸ“–CompOpβ€”
baseChangeContinuousAlgEquiv πŸ“–CompOpβ€”
baseChangeLinearEquiv πŸ“–CompOp
1 mathmath: baseChangeLinearEquiv_tmul
mapRingHom πŸ“–CompOpβ€”
mapSemialgHom πŸ“–CompOp
3 mathmath: baseChange_bijective, mapSemialgHom_continuous, mapSemialgHom_apply
restrictedProduct_pi_equiv πŸ“–CompOpβ€”
restrictedProduct_prod_equiv πŸ“–CompOp
1 mathmath: restrictedProduct_prod_equiv_apply
restrictedProduct_tensorProduct_equiv_restrictedProduct_prod πŸ“–CompOp
1 mathmath: restrictedProduct_tensorProduct_equiv_restrictedProduct_prod_apply
tensorEquivRestrictedProduct πŸ“–CompOp
1 mathmath: tensorEquivRestrictedProduct_tmul
tensorEquivTensor πŸ“–CompOp
1 mathmath: tensorEquivTensor_tmul

Theorems

NameKindAssumesProvesValidatesDepends On
baseChangeLinearEquiv_tmul πŸ“–mathematicalβ€”IsDedekindDomain.baseChangeAlgebra
baseChangeLinearEquiv
IsDedekindDomain.baseChangeIntegerAlgebra
IsDedekindDomain.BaseChange.algebra
β€”tensorEquivTensor_tmul
IsDedekindDomain.HeightOneSpectrum.adicCompletionComapIntegerLinearEquiv_tmul_apply
instIsScalarTowerWithVal_fLT_1
IsDedekindDomain.algebraMap_apply
baseChange_bijective πŸ“–mathematicalβ€”SemialgHom.baseChange_of_algebraMap
mapSemialgHom
β€”IsIntegralClosure.isLocalizedModule
IsLocalization.tensorProduct_ext
SemialgHom.baseChange_of_algebraMap_tmul
IsDedekindDomain.algebraMap_apply
baseChangeLinearEquiv_tmul
mapSemialgHom_apply πŸ“–mathematicalβ€”SemialgHom
instFunLike
mapSemialgHom
IsDedekindDomain.HeightOneSpectrum.comap
IsDedekindDomain.HeightOneSpectrum.comap_algebra
β€”β€”
mapSemialgHom_continuous πŸ“–mathematicalβ€”SemialgHom
instFunLike
mapSemialgHom
β€”IsDedekindDomain.tendsTo_comap_cofinite
IsDedekindDomain.cofinite_mapsTo_adicCompletionComapSemialgHom
IsDedekindDomain.HeightOneSpectrum.adicCompletionComapSemialgHom_continuous
restrictedProduct_pi_isModuleTopology πŸ“–mathematicalβ€”IsDedekindDomain.HeightOneSpectrum.Extension
IsDedekindDomain.HeightOneSpectrum.comap
IsDedekindDomain.instModuleSubtypeAdicCompletionMemValuationSubringAdicCompletionIntegersForallValHeightOneSpectrumEqComap
IsDedekindDomain.piAdicIntegerSubmodule
IsDedekindDomain.instModuleFiniteAdeleRingRestrictedProductHeightOneSpectrumForallAdicCompletionValEqComapCoeSubmoduleSubtypeMemValuationSubringAdicCompletionIntegersPiAdicIntegerSubmoduleCofinite
β€”IsDedekindDomain.instFiniteFiniteAdeleRing_fLT
IsDedekindDomain.HeightOneSpectrum.prodAdicCompletionComap_isModuleTopology
RestrictedProduct.isModuleTopology
IsDedekindDomain.HeightOneSpectrum.Extension.finite
restrictedProduct_prod_equiv_apply πŸ“–mathematicalβ€”IsDedekindDomain.HeightOneSpectrum.Extension
IsDedekindDomain.HeightOneSpectrum.comap
instAlgebraWithVal_fLT_1
instIsScalarTowerWithVal_fLT_1
IsDedekindDomain.HeightOneSpectrum.integerSubmodule
IsDedekindDomain.baseChangeIntegerAlgebra
restrictedProduct_prod_equiv
β€”instIsScalarTowerWithVal_fLT_1
restrictedProduct_tensorProduct_equiv_restrictedProduct_prod_apply πŸ“–mathematicalβ€”IsDedekindDomain.HeightOneSpectrum.Extension
IsDedekindDomain.HeightOneSpectrum.comap
instAlgebraWithVal_fLT_1
instIsScalarTowerWithVal_fLT_1
IsDedekindDomain.HeightOneSpectrum.integerSubmodule
RestrictedProduct.rangeLTensor
restrictedProduct_tensorProduct_equiv_restrictedProduct_prod
IsDedekindDomain.HeightOneSpectrum.adicCompletionComapIntegerLinearEquiv
β€”instIsScalarTowerWithVal_fLT_1
tensorEquivRestrictedProduct_tmul πŸ“–mathematicalβ€”instAlgebraWithVal_fLT_1
RestrictedProduct.rangeLTensor
IsDedekindDomain.HeightOneSpectrum.integerSubmodule
IsDedekindDomain.baseChangeIntegerAlgebra
tensorEquivRestrictedProduct
β€”β€”
tensorEquivTensor_tmul πŸ“–mathematicalβ€”IsDedekindDomain.baseChangeAlgebra
IsDedekindDomain.baseChangeIntegerAlgebra
tensorEquivTensor
β€”IsDedekindDomain.linearEquivTensorProductModule_tmul

---

← Back to Index