Documentation Verification Report

Basic

πŸ“ Source: FLT/Deformations/Algebra/InverseLimit/Basic.lean

Statistics

MetricCount
DefinitionsInverseSystemHom, instAdd, instAddActionOfAddActionHomClass, instAddCommGroupOfAddMonoidHomClass, instAddCommGroupWithOneOfAddMonoidHomClassOfOneHomClass, instAddCommMagmaOfAddHomClass, instAddCommMonoidOfAddMonoidHomClass, instAddCommMonoidWithOneOfAddMonoidHomClassOfOneHomClass, instAddCommSemigroupOfAddHomClass, instAddGroup, instAddGroupWithOne, instAddMonoid, instAddMonoidWithOne, instAddSemigroupOfAddHomClass, instAddZeroClassOfAddMonoidHomClass, instCoeOutForall, instCommGroupOfMonoidHomClass, instCommMagmaOfMulHomClass, instCommMonoidOfMonoidHomClass, instCommMonoidWithZeroOfMonoidWithZeroHomClass, instCommMonoidWithZeroOfMonoidWithZeroHomClass_1, instCommRingOfRingHomClass, instCommSemigroupOfMulHomClass, instCommSemiringOfRingHomClass, instDistribMulAction, instDistribSMulOfMulActionHomClass, instDivInvMonoid, instGroup, instModule, instMonoid, instMonoidWithZeroOfMonoidWithZeroHomClass, instMul, instMulActionOfMulActionHomClass, instMulDistribMulActionOfMulActionHomClass, instMulOneClassOfMonoidHomClass, instMulZeroClassOfMulHomClassOfZeroHomClass, instMulZeroOneClass, instNonAssocSemiringOfRingHomClass, instNonUnitalCommSemiringOfNonUnitalRingHomClass, instNonUnitalNonAssocCommSemiringOfNonUnitalRingHomClass, instNonUnitalNonAssocSemiringOfNonUnitalRingHomClass, instNonUnitalSemiringOfNonUnitalRingHomClass, instOne, instRingOfRingHomClass, instSMul, instSMulWithZeroOfMulActionHomClass, instSMulZeroClassOfMulActionHomClass, instSemigroupOfMulHomClass, instSemigroupWithZeroOfMulHomClassOfZeroHomClass, instSemiringOfRingHomClass, instVAdd, instZero, lift, liftLinearMap, liftMonoidHom, liftRingHom, toComponent, toComponentLinearMap, toComponentMonoidHom, toComponentRingHom
60
TheoremsInverseLimit_def, add_def, div_def, divβ‚€_def, ext_lemma, ext_lemma_iff, instNontrivial, intCast_def, inv_def, invβ‚€_def, lift_def, mul_def, natCast_def, neg_def, npow_def, nsmul_def, one_def, prop, smul_def, sub_def, toComponent_def, vadd_def, zero_def, zpow_def, zpowβ‚€_def, zsmul_def
26
Total86

InverseLimit

Definitions

NameCategoryTheorems
InverseSystemHom πŸ“–MathDefβ€”
instAdd πŸ“–CompOp
1 mathmath: add_def
instAddActionOfAddActionHomClass πŸ“–CompOpβ€”
instAddCommGroupOfAddMonoidHomClass πŸ“–CompOp
1 mathmath: instIsTopologicalModule
instAddCommGroupWithOneOfAddMonoidHomClassOfOneHomClass πŸ“–CompOpβ€”
instAddCommMagmaOfAddHomClass πŸ“–CompOpβ€”
instAddCommMonoidOfAddMonoidHomClass πŸ“–CompOpβ€”
instAddCommMonoidWithOneOfAddMonoidHomClassOfOneHomClass πŸ“–CompOpβ€”
instAddCommSemigroupOfAddHomClass πŸ“–CompOpβ€”
instAddGroup πŸ“–CompOp
3 mathmath: zsmul_def, sub_def, neg_def
instAddGroupWithOne πŸ“–CompOp
1 mathmath: intCast_def
instAddMonoid πŸ“–CompOp
1 mathmath: nsmul_def
instAddMonoidWithOne πŸ“–CompOp
1 mathmath: natCast_def
instAddSemigroupOfAddHomClass πŸ“–CompOpβ€”
instAddZeroClassOfAddMonoidHomClass πŸ“–CompOpβ€”
instCoeOutForall πŸ“–CompOpβ€”
instCommGroupOfMonoidHomClass πŸ“–CompOpβ€”
instCommMagmaOfMulHomClass πŸ“–CompOpβ€”
instCommMonoidOfMonoidHomClass πŸ“–CompOpβ€”
instCommMonoidWithZeroOfMonoidWithZeroHomClass πŸ“–CompOpβ€”
instCommMonoidWithZeroOfMonoidWithZeroHomClass_1 πŸ“–CompOpβ€”
instCommRingOfRingHomClass πŸ“–CompOpβ€”
instCommSemigroupOfMulHomClass πŸ“–CompOpβ€”
instCommSemiringOfRingHomClass πŸ“–CompOpβ€”
instDistribMulAction πŸ“–CompOpβ€”
instDistribSMulOfMulActionHomClass πŸ“–CompOpβ€”
instDivInvMonoid πŸ“–CompOp
3 mathmath: divβ‚€_def, invβ‚€_def, zpowβ‚€_def
instGroup πŸ“–CompOp
4 mathmath: instIsTopologicalGroup, inv_def, zpow_def, div_def
instModule πŸ“–CompOp
1 mathmath: instIsTopologicalModule
instMonoid πŸ“–CompOp
1 mathmath: npow_def
instMonoidWithZeroOfMonoidWithZeroHomClass πŸ“–CompOpβ€”
instMul πŸ“–CompOp
1 mathmath: mul_def
instMulActionOfMulActionHomClass πŸ“–CompOpβ€”
instMulDistribMulActionOfMulActionHomClass πŸ“–CompOpβ€”
instMulOneClassOfMonoidHomClass πŸ“–CompOpβ€”
instMulZeroClassOfMulHomClassOfZeroHomClass πŸ“–CompOpβ€”
instMulZeroOneClass πŸ“–CompOpβ€”
instNonAssocSemiringOfRingHomClass πŸ“–CompOpβ€”
instNonUnitalCommSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalNonAssocCommSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalNonAssocSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instNonUnitalSemiringOfNonUnitalRingHomClass πŸ“–CompOpβ€”
instOne πŸ“–CompOp
1 mathmath: one_def
instRingOfRingHomClass πŸ“–CompOp
1 mathmath: instIsTopologicalRing
instSMul πŸ“–CompOp
1 mathmath: smul_def
instSMulWithZeroOfMulActionHomClass πŸ“–CompOpβ€”
instSMulZeroClassOfMulActionHomClass πŸ“–CompOpβ€”
instSemigroupOfMulHomClass πŸ“–CompOpβ€”
instSemigroupWithZeroOfMulHomClassOfZeroHomClass πŸ“–CompOpβ€”
instSemiringOfRingHomClass πŸ“–CompOpβ€”
instVAdd πŸ“–CompOp
1 mathmath: vadd_def
instZero πŸ“–CompOp
1 mathmath: zero_def
lift πŸ“–CompOp
2 mathmath: lift_continuous, lift_def
liftLinearMap πŸ“–CompOpβ€”
liftMonoidHom πŸ“–CompOpβ€”
liftRingHom πŸ“–CompOpβ€”
toComponent πŸ“–CompOp
2 mathmath: toComponent_def, toComponent_continuous
toComponentLinearMap πŸ“–CompOpβ€”
toComponentMonoidHom πŸ“–CompOpβ€”
toComponentRingHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
InverseLimit_def πŸ“–mathematicalβ€”InverseLimitβ€”β€”
add_def πŸ“–mathematicalβ€”InverseLimit
instAdd
β€”β€”
div_def πŸ“–mathematicalβ€”InverseLimit
instGroup
β€”β€”
divβ‚€_def πŸ“–mathematicalβ€”InverseLimit
instDivInvMonoid
β€”β€”
ext_lemma πŸ“–β€”β€”β€”β€”β€”
ext_lemma_iff πŸ“–β€”β€”β€”β€”ext_lemma
instNontrivial πŸ“–mathematicalβ€”InverseLimitβ€”β€”
intCast_def πŸ“–mathematicalβ€”InverseLimit
instAddGroupWithOne
β€”β€”
inv_def πŸ“–mathematicalβ€”InverseLimit
instGroup
β€”β€”
invβ‚€_def πŸ“–mathematicalβ€”InverseLimit
instDivInvMonoid
β€”β€”
lift_def πŸ“–mathematicalInverseSystemHomliftβ€”β€”
mul_def πŸ“–mathematicalβ€”InverseLimit
instMul
β€”β€”
natCast_def πŸ“–mathematicalβ€”InverseLimit
instAddMonoidWithOne
β€”β€”
neg_def πŸ“–mathematicalβ€”InverseLimit
instAddGroup
β€”β€”
npow_def πŸ“–mathematicalβ€”InverseLimit
instMonoid
β€”β€”
nsmul_def πŸ“–mathematicalβ€”InverseLimit
instAddMonoid
β€”β€”
one_def πŸ“–mathematicalβ€”InverseLimit
instOne
β€”β€”
prop πŸ“–β€”β€”β€”β€”β€”
smul_def πŸ“–mathematicalβ€”InverseLimit
instSMul
β€”β€”
sub_def πŸ“–mathematicalβ€”InverseLimit
instAddGroup
β€”β€”
toComponent_def πŸ“–mathematicalβ€”toComponentβ€”β€”
vadd_def πŸ“–mathematicalβ€”InverseLimit
instVAdd
β€”β€”
zero_def πŸ“–mathematicalβ€”InverseLimit
instZero
β€”β€”
zpow_def πŸ“–mathematicalβ€”InverseLimit
instGroup
β€”β€”
zpowβ‚€_def πŸ“–mathematicalβ€”InverseLimit
instDivInvMonoid
β€”β€”
zsmul_def πŸ“–mathematicalβ€”InverseLimit
instAddGroup
β€”β€”

---

← Back to Index