Documentation Verification Report

Lemmas

📁 Source: FLT/Deformations/Lemmas.lean

Statistics

MetricCount
DefinitionsinstDistrbMulAction, map, ofIsModuleTopology, mapMatrix, toContinuousMonoidHom, toHomUnits, endSelf, coeHomₜ, mapₜ, instAlgebraSubtypeMemValuationSubring_fLT, instMulActionContinuousMonoidHomOfContinuousConstSMul_fLT, instMulActionMonoidHomOfMulDistribMulAction_fLT, instMulSemiringActionRingOfIntegers_fLT, instMulSemiringActionSubtypeMemIntermediateFieldOfSMulCommClassOfNormal_fLT
14
Theoremscontinuous_iff_isOpen_ker, map_algebraMap, coe_toContinuousMonoidHom, isLocalHom_comp, isLocalHom_id, isLocalHom_toRingHom, mapMatrix_apply, coe_mk, coe_smul, mk_toMonoidHom, val_inv_toHomUnits_toFun, val_toHomUnits_toFun, adjoin_adjoin_right, smulCommClass_of_normal, exists_ideal_isMaximal_and_isOpen, map_surjective, map_maximalIdeal, continuous_det, discreteUniformity, discreteUniformity, totallyBounded, coe_smul, continuous_iff_isOpen_ker, continuous_iff_isOpen_ker, index_op, algebraMap_def, coeHomₜ_toFun, val_inv_mapₜ_toFun, val_mapₜ_toFun, smulCommClass, continuousAt_discrete_rng, instContinuousConstSMulConjActOfContinuousMul_fLT, instFaithfulSMulSubtypeMemValuationSubring_fLT, instFiniteIndexMulOppositeOp_fLT, instIsLocalHomContinuousAlgHomToContinuousAlgHom_fLT, instIsLocalHomResidueFieldRingHomAlgebraMap_fLT, instIsLocalHomRingHomAlgebraMap_fLT, instIsLocalHomRingHomOfContinuousAlgHom_fLT, instIsLocalHomRingHomOfContinuousAlgHom_fLT_1, instIsLocalHomRingHomToRingHom_fLT, instIsLocalHomRingHomToRingHom_fLT_1, instIsModuleTopologyMatrixOfFiniteOfIsTopologicalRing_fLT, instNumberFieldSubtypeMemIntermediateFieldOfFiniteDimensional_fLT
43
Total57

AddMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_iff_isOpen_ker 📖

Additive

Definitions

NameCategoryTheorems
instDistrbMulAction 📖CompOp

AlgebraicClosure

Definitions

NameCategoryTheorems
map 📖CompOp
2 mathmath: map_algebraMap, Field.absoluteGaloisGroup.lift_map

Theorems

NameKindAssumesProvesValidatesDepends On
map_algebraMap 📖mathematicalmap

ContinuousAlgEquiv

Definitions

NameCategoryTheorems
ofIsModuleTopology 📖CompOp

ContinuousAlgHom

Definitions

NameCategoryTheorems
mapMatrix 📖CompOp
1 mathmath: mapMatrix_apply
toContinuousMonoidHom 📖CompOp
1 mathmath: coe_toContinuousMonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_toContinuousMonoidHom 📖mathematicaltoContinuousMonoidHom
isLocalHom_comp 📖instIsLocalHomRingHomOfContinuousAlgHom_fLT_1
isLocalHom_id 📖
isLocalHom_toRingHom 📖
mapMatrix_apply 📖mathematicalmapMatrix

ContinuousMonoidHom

Definitions

NameCategoryTheorems
toHomUnits 📖CompOp
2 mathmath: val_inv_toHomUnits_toFun, val_toHomUnits_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
coe_mk 📖
coe_smul 📖mathematicalinstMulActionContinuousMonoidHomOfContinuousConstSMul_fLT
mk_toMonoidHom 📖
val_inv_toHomUnits_toFun 📖mathematicaltoHomUnits
val_toHomUnits_toFun 📖mathematicaltoHomUnits

IntermediateField

Theorems

NameKindAssumesProvesValidatesDepends On
adjoin_adjoin_right 📖
smulCommClass_of_normal 📖mathematicalinstMulSemiringActionSubtypeMemIntermediateFieldOfSMulCommClassOfNormal_fLT

IsLinearTopology

Theorems

NameKindAssumesProvesValidatesDepends On
exists_ideal_isMaximal_and_isOpen 📖

IsLocalRing

Theorems

NameKindAssumesProvesValidatesDepends On
map_maximalIdeal 📖

IsLocalRing.ResidueField

Theorems

NameKindAssumesProvesValidatesDepends On
map_surjective 📖

IsModuleTopology

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_det 📖

IsTopologicalAddGroup

Theorems

NameKindAssumesProvesValidatesDepends On
discreteUniformity 📖

IsTopologicalGroup

Theorems

NameKindAssumesProvesValidatesDepends On
discreteUniformity 📖
totallyBounded 📖instFiniteIndexMulOppositeOp_fLT

Module

Definitions

NameCategoryTheorems
endSelf 📖CompOp

MonoidHom

Theorems

NameKindAssumesProvesValidatesDepends On
coe_smul 📖mathematicalinstMulActionMonoidHomOfMulDistribMulAction_fLT
continuous_iff_isOpen_ker 📖

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_iff_isOpen_ker 📖AddMonoidHom.continuous_iff_isOpen_ker

Subgroup

Theorems

NameKindAssumesProvesValidatesDepends On
index_op 📖

Subring

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_def 📖

Units

Definitions

NameCategoryTheorems
coeHomₜ 📖CompOp
1 mathmath: coeHomₜ_toFun
mapₜ 📖CompOp
2 mathmath: val_mapₜ_toFun, val_inv_mapₜ_toFun

Theorems

NameKindAssumesProvesValidatesDepends On
coeHomₜ_toFun 📖mathematicalcoeHomₜ
val_inv_mapₜ_toFun 📖mathematicalmapₜ
val_mapₜ_toFun 📖mathematicalmapₜ

ValuationSubring

Theorems

NameKindAssumesProvesValidatesDepends On
smulCommClass 📖mathematicalinstAlgebraSubtypeMemValuationSubring_fLT

(root)

Definitions

NameCategoryTheorems
instAlgebraSubtypeMemValuationSubring_fLT 📖CompOp
6 mathmath: neZero_maximalIdeal_integralClosure, Field.AbsoluteGaloisGroup.isArithFrobAt_adicArithFrob, not_isField_integralClosure, ValuationSubring.smulCommClass, valuationRing_integralClosure, isInvariant_integralClosure
instMulActionContinuousMonoidHomOfContinuousConstSMul_fLT 📖CompOp
1 mathmath: ContinuousMonoidHom.coe_smul
instMulActionMonoidHomOfMulDistribMulAction_fLT 📖CompOp
1 mathmath: MonoidHom.coe_smul
instMulSemiringActionRingOfIntegers_fLT 📖CompOp
instMulSemiringActionSubtypeMemIntermediateFieldOfSMulCommClassOfNormal_fLT 📖CompOp
1 mathmath: IntermediateField.smulCommClass_of_normal

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAt_discrete_rng 📖
instContinuousConstSMulConjActOfContinuousMul_fLT 📖
instFaithfulSMulSubtypeMemValuationSubring_fLT 📖
instFiniteIndexMulOppositeOp_fLT 📖Subgroup.index_op
instIsLocalHomContinuousAlgHomToContinuousAlgHom_fLT 📖
instIsLocalHomResidueFieldRingHomAlgebraMap_fLT 📖
instIsLocalHomRingHomAlgebraMap_fLT 📖
instIsLocalHomRingHomOfContinuousAlgHom_fLT 📖ContinuousAlgHom.isLocalHom_toRingHom
instIsLocalHomRingHomOfContinuousAlgHom_fLT_1 📖ContinuousAlgHom.isLocalHom_toRingHom
instIsLocalHomRingHomToRingHom_fLT 📖
instIsLocalHomRingHomToRingHom_fLT_1 📖
instIsModuleTopologyMatrixOfFiniteOfIsTopologicalRing_fLT 📖
instNumberFieldSubtypeMemIntermediateFieldOfFiniteDimensional_fLT 📖

---

← Back to Index