Documentation Verification Report

AbsoluteGaloisGroup

📁 Source: FLT/Deformations/RepresentationTheory/AbsoluteGaloisGroup.lean

Statistics

MetricCount
DefinitionsadicArithFrob, map, mapAux, instNontriviallyNormedFieldAdicCompletionRingOfIntegers_fLT, localInertiaGroup, localTameAbelianInertiaGroup
6
TheoremsisArithFrobAt_adicArithFrob, lift_map, finiteIndex_fixingSubgroup, finite_adicCompletionIntegers_quotient, instCharZeroAdicCompletionRingOfIntegers_fLT, instCompactSpaceAlgEquivOfIsAlgebraic_fLT, instContinuousSMulDiscreteAlgEquivOfIsAlgebraic, instFiniteResidueFieldSubtypeAdicCompletionRingOfIntegersMemValuationSubringAdicCompletionIntegers_fLT, instIsInvariantAlgEquivOfIsGalois_fLT, instIsInvariantAlgEquivOfIsGalois_fLT_1, isIntegral_of_spectralNorm_le_one, neZero_maximalIdeal_integralClosure, spectralNorm_inv, valuationRing_integralClosure
14
Total20

Field.AbsoluteGaloisGroup

Definitions

NameCategoryTheorems
adicArithFrob 📖CompOp
2 mathmath: isArithFrobAt_adicArithFrob, GaloisRepresentation.IsHardlyRamified.three_adic

Theorems

NameKindAssumesProvesValidatesDepends On
isArithFrobAt_adicArithFrob 📖mathematicalIntegralClosure
instAlgebraSubtypeMemValuationSubring_fLT
instCommRingIntegralClosure
instAlgebraIntegralClosure
mulSemiringActionIntegralClosure
ValuationSubring.smulCommClass
smulCommClass_integralClosure
adicArithFrob
instIsDomainIntegralClosure
valuationRing_integralClosure
IsArithFrobAt.arithFrobAt'
ValuationSubring.smulCommClass
smulCommClass_integralClosure
instIsDomainIntegralClosure
valuationRing_integralClosure
instCompactSpaceAlgEquivOfIsAlgebraic_fLT
isInvariant_integralClosure
instIsInvariantAlgEquivOfIsGalois_fLT_1
instCharZeroAdicCompletionRingOfIntegers_fLT
continuousSMulDiscrete_integralClosure
instContinuousSMulDiscreteAlgEquivOfIsAlgebraic
finite_adicCompletionIntegers_quotient
instNeZeroIdealUnderOfNontrivialOfIsDomainOfIsIntegral_fLT
instIsIntegralIntegralClosure
neZero_maximalIdeal_integralClosure

Field.absoluteGaloisGroup

Definitions

NameCategoryTheorems
map 📖CompOp
2 mathmath: GaloisRep.ker_map, lift_map
mapAux 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
lift_map 📖mathematicalAlgebraicClosure.map
map

(root)

Definitions

NameCategoryTheorems
instNontriviallyNormedFieldAdicCompletionRingOfIntegers_fLT 📖CompOp
localInertiaGroup 📖CompOp
1 mathmath: GaloisRep.IsUnramifiedAt.localInertiaGroup_le
localTameAbelianInertiaGroup 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
finiteIndex_fixingSubgroup 📖
finite_adicCompletionIntegers_quotient 📖instFiniteResidueFieldSubtypeAdicCompletionRingOfIntegersMemValuationSubringAdicCompletionIntegers_fLT
instCharZeroAdicCompletionRingOfIntegers_fLT 📖
instCompactSpaceAlgEquivOfIsAlgebraic_fLT 📖IsTopologicalGroup.totallyBounded
finiteIndex_fixingSubgroup
instContinuousSMulDiscreteAlgEquivOfIsAlgebraic 📖mathematicalContinuousSMulDiscrete
instFiniteResidueFieldSubtypeAdicCompletionRingOfIntegersMemValuationSubringAdicCompletionIntegers_fLT 📖NumberField.instFiniteResidueFieldAdicCompletionIntegers
instIsInvariantAlgEquivOfIsGalois_fLT 📖
instIsInvariantAlgEquivOfIsGalois_fLT_1 📖
isIntegral_of_spectralNorm_le_one 📖Subring.algebraMap_def
neZero_maximalIdeal_integralClosure 📖mathematicalIntegralClosure
instAlgebraSubtypeMemValuationSubring_fLT
instCommRingIntegralClosure
instIsDomainIntegralClosure
valuationRing_integralClosure
instIsDomainIntegralClosure
valuationRing_integralClosure
not_isField_integralClosure
spectralNorm_inv 📖
valuationRing_integralClosure 📖mathematicalIntegralClosure
instAlgebraSubtypeMemValuationSubring_fLT
instCommRingIntegralClosure
instIsDomainIntegralClosure
isIntegral_of_spectralNorm_le_one
spectralNorm_inv

---

← Back to Index