| Name | Category | Theorems |
HasFlatProlongationAt 📖 | MathDef | 1 mathmath: IsFlatAt.cond
|
IsFlatAt 📖 | CompData | 1 mathmath: GaloisRepresentation.IsHardlyRamified.isFlat
|
IsIrreducible 📖 | MathDef | 3 mathmath: Mazur_Frey, Wiles_Frey, FreyCurve.torsion_not_isIrreducible
|
IsUnramifiedAt 📖 | CompData | 3 mathmath: GaloisRepresentation.IsHardlyRamified.isUnramified, instIsUnramifiedAtConj, instIsUnramifiedAtTensorProductBaseChange
|
Space 📖 | CompOp | — |
baseChange 📖 | CompOp | 9 mathmath: ker_baseChange, IsFlatAt.cond, FramedGaloisRep.baseChange_def, baseChange_map, baseChange_tmul, frame_baseChange, GaloisRepresentation.IsHardlyRamified.mem_isCompatible, GaloisRepresentation.IsHardlyRamified.lifts, instIsUnramifiedAtTensorProductBaseChange
|
charFrob 📖 | CompOp | 1 mathmath: charFrob_eq
|
conj 📖 | CompOp | 7 mathmath: map_conj, conj_apply_apply, conj_apply, instIsUnramifiedAtConj, GaloisRepresentation.IsHardlyRamified.mem_isCompatible, GaloisRepresentation.IsHardlyRamified.lifts, ker_conj
|
conjEquiv 📖 | CompOp | — |
det 📖 | CompOp | 2 mathmath: FramedGaloisRep.det_baseChange, GaloisRepresentation.IsHardlyRamified.det
|
frame 📖 | CompOp | 4 mathmath: FramedGaloisRep.baseChange_def, unframe_frame, FramedGaloisRep.unframe_frame, frame_baseChange
|
ker 📖 | CompOp | 5 mathmath: ker_baseChange, GaloisRepresentation.IsHardlyRamified.isTameAtTwo, ker_map, IsUnramifiedAt.localInertiaGroup_le, ker_conj
|
map 📖 | CompOp | 5 mathmath: baseChange_map, map_conj, GaloisRepresentation.IsHardlyRamified.isTameAtTwo, ker_map, cyclic_base_change
|
toLocal 📖 | CompOp | 3 mathmath: IsUnramifiedAt.localInertiaGroup_le, charFrob_eq, GaloisRepresentation.IsHardlyRamified.three_adic
|
toRepresentation 📖 | CompOp | — |