Documentation Verification Report

GaloisRep

📁 Source: FLT/Deformations/RepresentationTheory/GaloisRep.lean

Statistics

MetricCount
DefinitionsFramedGaloisRep, GL, baseChange, equivChar, map, ofGL, unframe, GaloisRep, HasFlatProlongationAt, IsFlatAt, IsIrreducible, IsUnramifiedAt, Space, baseChange, charFrob, conj, conjEquiv, det, frame, ker, map, toLocal, toRepresentation, instAddCommGroupSpace, instDistribMulActionAbsoluteGaloisGroupSpace, instFunLikeGaloisRepAbsoluteGaloisGroupEnd
26
TheoremsGL_apply, GL_symm_apply, baseChange_GL, baseChange_def, baseChange_map, det_baseChange, ofGL_apply, unframe_frame, cond, localInertiaGroup_le, baseChange_map, baseChange_tmul, charFrob_eq, conj_apply, conj_apply_apply, ext, ext_iff, frame_baseChange, ker_baseChange, ker_conj, ker_map, map_conj, unframe_frame, trace_toLin', map_det, instIsUnramifiedAtConj, instIsUnramifiedAtTensorProductBaseChange, instMonoidHomClassGaloisRepAbsoluteGaloisGroupEnd
28
Total54

FramedGaloisRep

Definitions

NameCategoryTheorems
GL 📖CompOp
3 mathmath: GL_apply, GL_symm_apply, baseChange_GL
baseChange 📖CompOp
6 mathmath: baseChange_def, baseChange_map, baseChange_GL, GaloisRep.frame_baseChange, det_baseChange, Deformation.toFramedGaloisRep_map
equivChar 📖CompOp
map 📖CompOp
1 mathmath: baseChange_map
ofGL 📖CompOp
1 mathmath: ofGL_apply
unframe 📖CompOp
2 mathmath: GaloisRep.unframe_frame, unframe_frame

Theorems

NameKindAssumesProvesValidatesDepends On
GL_apply 📖mathematicalFramedGaloisRep
GL
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
GL_symm_apply 📖mathematicalFramedGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
GL
baseChange_GL 📖mathematicalFramedGaloisRep
GL
baseChange
baseChange_def 📖mathematicalbaseChange
GaloisRep.frame
GaloisRep.baseChange
GaloisRep.frame_baseChange
baseChange_map 📖mathematicalmap
baseChange
det_baseChange 📖mathematicalGaloisRep.det
baseChange
GL_symm_apply
Matrix.map_det
ofGL_apply 📖mathematicalFramedGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
ofGL
unframe_frame 📖mathematicalGaloisRep.frame
unframe
GaloisRep.ext

GaloisRep

Definitions

NameCategoryTheorems
HasFlatProlongationAt 📖MathDef
1 mathmath: IsFlatAt.cond
IsFlatAt 📖CompData
1 mathmath: GaloisRepresentation.IsHardlyRamified.isFlat
IsIrreducible 📖MathDef
3 mathmath: Mazur_Frey, Wiles_Frey, FreyCurve.torsion_not_isIrreducible
IsUnramifiedAt 📖CompData
3 mathmath: GaloisRepresentation.IsHardlyRamified.isUnramified, instIsUnramifiedAtConj, instIsUnramifiedAtTensorProductBaseChange
Space 📖CompOp
baseChange 📖CompOp
9 mathmath: ker_baseChange, IsFlatAt.cond, FramedGaloisRep.baseChange_def, baseChange_map, baseChange_tmul, frame_baseChange, GaloisRepresentation.IsHardlyRamified.mem_isCompatible, GaloisRepresentation.IsHardlyRamified.lifts, instIsUnramifiedAtTensorProductBaseChange
charFrob 📖CompOp
1 mathmath: charFrob_eq
conj 📖CompOp
7 mathmath: map_conj, conj_apply_apply, conj_apply, instIsUnramifiedAtConj, GaloisRepresentation.IsHardlyRamified.mem_isCompatible, GaloisRepresentation.IsHardlyRamified.lifts, ker_conj
conjEquiv 📖CompOp
det 📖CompOp
2 mathmath: FramedGaloisRep.det_baseChange, GaloisRepresentation.IsHardlyRamified.det
frame 📖CompOp
4 mathmath: FramedGaloisRep.baseChange_def, unframe_frame, FramedGaloisRep.unframe_frame, frame_baseChange
ker 📖CompOp
5 mathmath: ker_baseChange, GaloisRepresentation.IsHardlyRamified.isTameAtTwo, ker_map, IsUnramifiedAt.localInertiaGroup_le, ker_conj
map 📖CompOp
5 mathmath: baseChange_map, map_conj, GaloisRepresentation.IsHardlyRamified.isTameAtTwo, ker_map, cyclic_base_change
toLocal 📖CompOp
3 mathmath: IsUnramifiedAt.localInertiaGroup_le, charFrob_eq, GaloisRepresentation.IsHardlyRamified.three_adic
toRepresentation 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
baseChange_map 📖mathematicalmap
baseChange
baseChange_tmul 📖mathematicalGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
baseChange
charFrob_eq 📖mathematicalIntegralClosure
instAlgebraSubtypeMemValuationSubring_fLT
instCommRingIntegralClosure
instAlgebraIntegralClosure
mulSemiringActionIntegralClosure
smulCommClass_integralClosure
instIsDomainIntegralClosure
valuationRing_integralClosure
GaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
toLocal
charFrob
smulCommClass_integralClosure
instIsDomainIntegralClosure
valuationRing_integralClosure
IsUnramifiedAt.localInertiaGroup_le
Field.AbsoluteGaloisGroup.isArithFrobAt_adicArithFrob
charFrob.eq_1
conj_apply 📖mathematicalGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
conj
conj_apply_apply 📖mathematicalGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
conj
ext 📖GaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
ext_iff 📖mathematicalGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
ext
frame_baseChange 📖mathematicalframe
baseChange
FramedGaloisRep.baseChange
FramedGaloisRep.baseChange_GL
ker_baseChange 📖mathematicalker
baseChange
ker_conj 📖mathematicalker
conj
ker_map 📖mathematicalker
map
Field.absoluteGaloisGroup.map
map_conj 📖mathematicalmap
conj
unframe_frame 📖mathematicalFramedGaloisRep.unframe
frame
ext

GaloisRep.IsFlatAt

Theorems

NameKindAssumesProvesValidatesDepends On
cond 📖mathematicalGaloisRep.HasFlatProlongationAt
GaloisRep.baseChange

GaloisRep.IsUnramifiedAt

Theorems

NameKindAssumesProvesValidatesDepends On
localInertiaGroup_le 📖mathematicallocalInertiaGroup
GaloisRep.ker
GaloisRep.toLocal

LinearMap

Theorems

NameKindAssumesProvesValidatesDepends On
trace_toLin' 📖

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
map_det 📖

(root)

Definitions

NameCategoryTheorems
FramedGaloisRep 📖CompOp
4 mathmath: FramedGaloisRep.GL_apply, FramedGaloisRep.GL_symm_apply, FramedGaloisRep.baseChange_GL, FramedGaloisRep.ofGL_apply
GaloisRep 📖CompOp
9 mathmath: GaloisRepresentation.IsHardlyRamified.mod_three, GaloisRepresentation.IsHardlyRamified.isTameAtTwo, GaloisRep.baseChange_tmul, GaloisRep.conj_apply_apply, GaloisRep.ext_iff, GaloisRep.conj_apply, GaloisRep.charFrob_eq, instMonoidHomClassGaloisRepAbsoluteGaloisGroupEnd, GaloisRepresentation.IsHardlyRamified.three_adic
instAddCommGroupSpace 📖CompOp
instDistribMulActionAbsoluteGaloisGroupSpace 📖CompOp
instFunLikeGaloisRepAbsoluteGaloisGroupEnd 📖CompOp
12 mathmath: FramedGaloisRep.GL_apply, GaloisRepresentation.IsHardlyRamified.mod_three, GaloisRepresentation.IsHardlyRamified.isTameAtTwo, GaloisRep.baseChange_tmul, GaloisRep.conj_apply_apply, FramedGaloisRep.GL_symm_apply, GaloisRep.ext_iff, GaloisRep.conj_apply, GaloisRep.charFrob_eq, FramedGaloisRep.ofGL_apply, instMonoidHomClassGaloisRepAbsoluteGaloisGroupEnd, GaloisRepresentation.IsHardlyRamified.three_adic

Theorems

NameKindAssumesProvesValidatesDepends On
instIsUnramifiedAtConj 📖mathematicalGaloisRep.IsUnramifiedAt
GaloisRep.conj
GaloisRep.IsUnramifiedAt.localInertiaGroup_le
GaloisRep.ker_conj
instIsUnramifiedAtTensorProductBaseChange 📖mathematicalGaloisRep.IsUnramifiedAt
GaloisRep.baseChange
GaloisRep.IsUnramifiedAt.localInertiaGroup_le
GaloisRep.ker_baseChange
instMonoidHomClassGaloisRepAbsoluteGaloisGroupEnd 📖mathematicalGaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd

---

← Back to Index