| Name | Category | Theorems |
C ๐ | CompOp | 3 mathmath: C_compact, ImAux_isCompact, antidiag_mem_C
|
D_iso ๐ | CompOp | 1 mathmath: D_discrete_aux
|
Df ๐ | CompOp | 12 mathmath: incl_D๐ธquot_surjective, incl_D๐ธquot_equivariant, ringHaarChar_D๐ธ, incl_D๐ธquot_continuous, smul_D๐ธ_prodRight_symm, instBorelSpaceDf, instIsModuleTopologyRingOfIntegersProdDinfDf, D๐ธ_prodRight_units_cont, ringHaarChar_D๐ธ_prodRight_units_aux, restโ_continuous, ringHaarChar_D๐ธ_real_surjective, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact
|
Dfx ๐ | CompOp | 11 mathmath: incl_D๐ธquot_surjective, incl_D๐ธquot_equivariant, ringHaarChar_D๐ธ, incl_D๐ธquot_continuous, smul_D๐ธ_prodRight_symm, D๐ธ_prodRight_units_cont, ringHaarChar_D๐ธ_prodRight_units_aux, restโ_surjective, restโ_continuous, ringHaarChar_D๐ธ_real_surjective, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact
|
Dinf ๐ | CompOp | 13 mathmath: instIsScalarTowerRealInfiniteAdeleRingDinf, NumberField.InfiniteAdeleRing.tensorPi_equiv_piTensor_map_mul, instIsModuleTopologyRealDinf, ringHaarChar_D๐ธ, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, smul_D๐ธ_prodRight_symm, instIsModuleTopologyRingOfIntegersProdDinfDf, instFiniteRealDinf, D๐ธ_prodRight_units_cont, ringHaarChar_D๐ธ_prodRight_units_aux, ringHaarChar_D๐ธ_real_surjective, instSecondCountableTopologyDinf, instBorelSpaceDinf
|
Dinfx ๐ | CompOp | 5 mathmath: ringHaarChar_D๐ธ, smul_D๐ธ_prodRight_symm, D๐ธ_prodRight_units_cont, ringHaarChar_D๐ธ_prodRight_units_aux, ringHaarChar_D๐ธ_real_surjective
|
D๐ธ_iso ๐ | CompOp | โ |
D๐ธ_iso_top ๐ | CompOp | 1 mathmath: D_discrete_aux
|
D๐ธ_prodRight ๐ | CompOp | 1 mathmath: smul_D๐ธ_prodRight_symm
|
D๐ธ_prodRight' ๐ | CompOp | โ |
D๐ธ_prodRight'' ๐ | CompOp | โ |
D๐ธ_prodRight_units ๐ | CompOp | 5 mathmath: ringHaarChar_D๐ธ, smul_D๐ธ_prodRight_symm, D๐ธ_prodRight_units_cont, ringHaarChar_D๐ธ_prodRight_units_aux, ringHaarChar_D๐ธ_real_surjective
|
E ๐ | CompOp | 3 mathmath: E_noninjective_right, E_compact, E_noninjective_left
|
Efamily ๐ | CompOp | 3 mathmath: E_family_compact, E_family_unbounded, E_family_nonempty_interior
|
M ๐ | CompOp | 2 mathmath: toQuot_surjective, M_compact
|
T ๐ | CompOp | 1 mathmath: T_finite
|
Uf ๐ | CompOp | 1 mathmath: Uf.spec
|
Ui ๐ | CompOp | 1 mathmath: Ui.spec
|
X ๐ | CompOp | 3 mathmath: X_compact, X_meets_kernel, X_meets_kernel'
|
Y ๐ | CompOp | 2 mathmath: T_finite_extracted1, Y_compact
|
incl ๐ | CompOp | 8 mathmath: incl_D๐ธquot_surjective, incl_D๐ธquot_continuous, toQuot_cont, toQuot_surjective, X_meets_kernel, NumberField.AdeleRing.DivisionAlgebra.compact_quotient, X_meets_kernel', antidiag_mem_C
|
incl_D๐ธquot ๐ | CompOp | 2 mathmath: incl_D๐ธquot_surjective, incl_D๐ธquot_continuous
|
incl_Kn_๐ธKn ๐ | CompOp | 2 mathmath: Kn_discrete, D_discrete_aux
|
includeLeft_subgroup ๐ | CompOp | 2 mathmath: compact_includeLeft_subgroup, discrete_includeLeft_subgroup
|
inclโ ๐ | CompOp | 5 mathmath: incl_D๐ธquot_surjective, incl_D๐ธquot_equivariant, incl_D๐ธquot_continuous, NumberField.FiniteAdeleRing.DivisionAlgebra.finiteDoubleCoset, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact
|
inclโ ๐ | CompOp | 1 mathmath: inclโ_isClosedEmbedding
|
instAlgebraRealDinf ๐ | CompOp | 4 mathmath: instIsScalarTowerRealInfiniteAdeleRingDinf, instIsModuleTopologyRealDinf, instFiniteRealDinf, ringHaarChar_D๐ธ_real_surjective
|
instMeasurableSpaceDf ๐ | CompOp | 2 mathmath: ringHaarChar_D๐ธ, instBorelSpaceDf
|
instMeasurableSpaceDinf ๐ | CompOp | 3 mathmath: ringHaarChar_D๐ธ, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, instBorelSpaceDinf
|
instMeasurableSpaceTensorProductRingOfIntegers_fLT ๐ | CompOp | 15 mathmath: incl_D๐ธquot_surjective, ringHaarChar_D๐ธ, incl_D๐ธquot_continuous, toQuot_cont, instBorelSpaceTensorProductRingOfIntegers_fLT, toQuot_surjective, NumberField.AdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, ringHaarChar_D๐ธ_prodRight_units_aux, NumberField.AdeleRing.DivisionAlgebra.compact_quotient, restโ_surjective, restโ_continuous, ringHaarChar_D๐ธ_real_surjective, M_compact, inclโ_isClosedEmbedding, E_family_unbounded
|
instModuleRingOfIntegersProdDinfDf ๐ | CompOp | 1 mathmath: instIsModuleTopologyRingOfIntegersProdDinfDf
|
restโ ๐ | CompOp | 3 mathmath: incl_D๐ธquot_equivariant, restโ_surjective, restโ_continuous
|
toQuot ๐ | CompOp | 2 mathmath: toQuot_cont, toQuot_surjective
|