Documentation Verification Report

Finiteness

๐Ÿ“ Source: FLT/DivisionAlgebra/Finiteness.lean

Statistics

MetricCount
DefinitionsC, D_iso, Df, Dfx, Dinf, Dinfx, D๐”ธ_iso, D๐”ธ_iso_top, D๐”ธ_prodRight, D๐”ธ_prodRight', D๐”ธ_prodRight'', D๐”ธ_prodRight_units, E, Efamily, M, T, Uf, Ui, X, Y, incl, incl_D๐”ธquot, incl_Kn_๐”ธKn, includeLeft_subgroup, inclโ‚, inclโ‚‚, instAlgebraRealDinf, instMeasurableSpaceDf, instMeasurableSpaceDinf, instMeasurableSpaceTensorProductRingOfIntegers_fLT, instModuleRingOfIntegersProdDinfDf, restโ‚, toQuot, instMeasurableSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT, instTopologicalSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT, Dinf_tensorPi_equiv_piTensor, Dinf_tensorPi_equiv_piTensor_aux, Dinf_tensorPi_equiv_piTensor_mulEquiv, instAlgebraRealCompletion_fLT, instAlgebraRealTensorProductCompletion_fLT, real_to_completion, termD_๐”ธ
42
TheoremsC_compact, D_discrete, D_discrete_aux, D๐”ธ_prodRight_units_cont, E_compact, E_family_compact, E_family_nonempty_interior, E_family_unbounded, E_noninjective_left, E_noninjective_right, ImAux_isCompact, Kn_discrete, M_compact, T_finite, T_finite_extracted1, spec, spec, X_compact, X_meets_kernel, X_meets_kernel', Y_compact, antidiag_mem_C, compact_includeLeft_subgroup, discrete_includeLeft_subgroup, discrete_principalSubgroup, existsE, incl_D๐”ธquot_continuous, incl_D๐”ธquot_equivariant, incl_D๐”ธquot_surjective, inclโ‚‚_isClosedEmbedding, instBorelSpaceDf, instBorelSpaceDinf, instBorelSpaceTensorProductRingOfIntegers_fLT, instFiniteRealDinf, instIsModuleTopologyRealDinf, instIsModuleTopologyRingOfIntegersProdDinfDf, instIsScalarTowerRealInfiniteAdeleRingDinf, instSecondCountableTopologyDinf, instT2SpaceTensorProductRingOfIntegers_fLT, not_injective_of_large_measure, restโ‚_continuous, restโ‚_surjective, ringHaarChar_D๐”ธ, ringHaarChar_D๐”ธ_prodRight_units_aux, ringHaarChar_D๐”ธ_real_surjective, smul_D๐”ธ_prodRight_symm, toQuot_cont, toQuot_surjective, compact_quotient, instBorelSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT, isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, finiteDoubleCoset, units_cocompact, algebraMap_completion, algebraMap_completion_def, instContinuousSMulRealCompletion_fLT, instFiniteRealCompletion_fLT, instIsModuleTopologyRealCompletion_fLT, instIsModuleTopologyRealForallTensorProductCompletion_fLT, instIsModuleTopologyRealTensorProductCompletion_fLT, instIsScalarTowerRealCompletionTensorProduct_fLT, instSecondCountableTopologyTensorProductCompletion_fLT, isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul_aux, tensorPi_equiv_piTensor_map_mul
65
Total107

NumberField.AdeleRing

Definitions

NameCategoryTheorems
instMeasurableSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT ๐Ÿ“–CompOp
1 mathmath: instBorelSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT
instTopologicalSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT ๐Ÿ“–CompOp
1 mathmath: instBorelSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT

Theorems

NameKindAssumesProvesValidatesDepends On
instBorelSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT ๐Ÿ“–mathematicalโ€”IsDedekindDomain.baseChangeAlgebra
instTopologicalSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT
instMeasurableSpaceTensorProductFiniteAdeleRingRingOfIntegers_fLT
โ€”โ€”
isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul ๐Ÿ“–mathematicalโ€”instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
DivisionAlgebra.Aux.instMeasurableSpaceTensorProductRingOfIntegers_fLT
DivisionAlgebra.Aux.instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
locallyCompactSpace
ContinuousAddEquiv.mulLeft
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
ContinuousAddEquiv.mulRight
โ€”DivisionAlgebra.Aux.instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
locallyCompactSpace
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
DivisionAlgebra.Aux.instBorelSpaceDinf
DivisionAlgebra.Aux.instBorelSpaceDf
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT
DivisionAlgebra.Aux.instSecondCountableTopologyDinf
MeasureTheory.addEquivAddHaarChar_prodCongr
MeasureTheory.addEquivAddHaarChar_eq_addEquivAddHaarChar_of_continuousAddEquiv
NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul
NumberField.FiniteAdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul

NumberField.AdeleRing.DivisionAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
compact_quotient ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
Aux.instMeasurableSpaceTensorProductRingOfIntegers_fLT
Aux.instBorelSpaceTensorProductRingOfIntegers_fLT
Aux.incl
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
Aux.instBorelSpaceTensorProductRingOfIntegers_fLT
Aux.toQuot_surjective
Aux.M_compact
Aux.toQuot_cont

NumberField.AdeleRing.DivisionAlgebra.Aux

Definitions

NameCategoryTheorems
C ๐Ÿ“–CompOp
3 mathmath: C_compact, ImAux_isCompact, antidiag_mem_C
D_iso ๐Ÿ“–CompOp
1 mathmath: D_discrete_aux
Df ๐Ÿ“–CompOp
12 mathmath: incl_D๐”ธquot_surjective, incl_D๐”ธquot_equivariant, ringHaarChar_D๐”ธ, incl_D๐”ธquot_continuous, smul_D๐”ธ_prodRight_symm, instBorelSpaceDf, instIsModuleTopologyRingOfIntegersProdDinfDf, D๐”ธ_prodRight_units_cont, ringHaarChar_D๐”ธ_prodRight_units_aux, restโ‚_continuous, ringHaarChar_D๐”ธ_real_surjective, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact
Dfx ๐Ÿ“–CompOp
11 mathmath: incl_D๐”ธquot_surjective, incl_D๐”ธquot_equivariant, ringHaarChar_D๐”ธ, incl_D๐”ธquot_continuous, smul_D๐”ธ_prodRight_symm, D๐”ธ_prodRight_units_cont, ringHaarChar_D๐”ธ_prodRight_units_aux, restโ‚_surjective, restโ‚_continuous, ringHaarChar_D๐”ธ_real_surjective, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact
Dinf ๐Ÿ“–CompOp
13 mathmath: instIsScalarTowerRealInfiniteAdeleRingDinf, NumberField.InfiniteAdeleRing.tensorPi_equiv_piTensor_map_mul, instIsModuleTopologyRealDinf, ringHaarChar_D๐”ธ, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, smul_D๐”ธ_prodRight_symm, instIsModuleTopologyRingOfIntegersProdDinfDf, instFiniteRealDinf, D๐”ธ_prodRight_units_cont, ringHaarChar_D๐”ธ_prodRight_units_aux, ringHaarChar_D๐”ธ_real_surjective, instSecondCountableTopologyDinf, instBorelSpaceDinf
Dinfx ๐Ÿ“–CompOp
5 mathmath: ringHaarChar_D๐”ธ, smul_D๐”ธ_prodRight_symm, D๐”ธ_prodRight_units_cont, ringHaarChar_D๐”ธ_prodRight_units_aux, ringHaarChar_D๐”ธ_real_surjective
D๐”ธ_iso ๐Ÿ“–CompOpโ€”
D๐”ธ_iso_top ๐Ÿ“–CompOp
1 mathmath: D_discrete_aux
D๐”ธ_prodRight ๐Ÿ“–CompOp
1 mathmath: smul_D๐”ธ_prodRight_symm
D๐”ธ_prodRight' ๐Ÿ“–CompOpโ€”
D๐”ธ_prodRight'' ๐Ÿ“–CompOpโ€”
D๐”ธ_prodRight_units ๐Ÿ“–CompOp
5 mathmath: ringHaarChar_D๐”ธ, smul_D๐”ธ_prodRight_symm, D๐”ธ_prodRight_units_cont, ringHaarChar_D๐”ธ_prodRight_units_aux, ringHaarChar_D๐”ธ_real_surjective
E ๐Ÿ“–CompOp
3 mathmath: E_noninjective_right, E_compact, E_noninjective_left
Efamily ๐Ÿ“–CompOp
3 mathmath: E_family_compact, E_family_unbounded, E_family_nonempty_interior
M ๐Ÿ“–CompOp
2 mathmath: toQuot_surjective, M_compact
T ๐Ÿ“–CompOp
1 mathmath: T_finite
Uf ๐Ÿ“–CompOp
1 mathmath: Uf.spec
Ui ๐Ÿ“–CompOp
1 mathmath: Ui.spec
X ๐Ÿ“–CompOp
3 mathmath: X_compact, X_meets_kernel, X_meets_kernel'
Y ๐Ÿ“–CompOp
2 mathmath: T_finite_extracted1, Y_compact
incl ๐Ÿ“–CompOp
8 mathmath: incl_D๐”ธquot_surjective, incl_D๐”ธquot_continuous, toQuot_cont, toQuot_surjective, X_meets_kernel, NumberField.AdeleRing.DivisionAlgebra.compact_quotient, X_meets_kernel', antidiag_mem_C
incl_D๐”ธquot ๐Ÿ“–CompOp
2 mathmath: incl_D๐”ธquot_surjective, incl_D๐”ธquot_continuous
incl_Kn_๐”ธKn ๐Ÿ“–CompOp
2 mathmath: Kn_discrete, D_discrete_aux
includeLeft_subgroup ๐Ÿ“–CompOp
2 mathmath: compact_includeLeft_subgroup, discrete_includeLeft_subgroup
inclโ‚ ๐Ÿ“–CompOp
5 mathmath: incl_D๐”ธquot_surjective, incl_D๐”ธquot_equivariant, incl_D๐”ธquot_continuous, NumberField.FiniteAdeleRing.DivisionAlgebra.finiteDoubleCoset, NumberField.FiniteAdeleRing.DivisionAlgebra.units_cocompact
inclโ‚‚ ๐Ÿ“–CompOp
1 mathmath: inclโ‚‚_isClosedEmbedding
instAlgebraRealDinf ๐Ÿ“–CompOp
4 mathmath: instIsScalarTowerRealInfiniteAdeleRingDinf, instIsModuleTopologyRealDinf, instFiniteRealDinf, ringHaarChar_D๐”ธ_real_surjective
instMeasurableSpaceDf ๐Ÿ“–CompOp
2 mathmath: ringHaarChar_D๐”ธ, instBorelSpaceDf
instMeasurableSpaceDinf ๐Ÿ“–CompOp
3 mathmath: ringHaarChar_D๐”ธ, NumberField.InfiniteAdeleRing.isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul, instBorelSpaceDinf
instMeasurableSpaceTensorProductRingOfIntegers_fLT ๐Ÿ“–CompOp
15 mathmath: incl_D๐”ธquot_surjective, ringHaarChar_D๐”ธ, incl_D๐”ธquot_continuous, toQuot_cont, instBorelSpaceTensorProductRingOfIntegers_fLT, toQuot_surjective, NumberField.AdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, ringHaarChar_D๐”ธ_prodRight_units_aux, NumberField.AdeleRing.DivisionAlgebra.compact_quotient, restโ‚_surjective, restโ‚_continuous, ringHaarChar_D๐”ธ_real_surjective, M_compact, inclโ‚‚_isClosedEmbedding, E_family_unbounded
instModuleRingOfIntegersProdDinfDf ๐Ÿ“–CompOp
1 mathmath: instIsModuleTopologyRingOfIntegersProdDinfDf
restโ‚ ๐Ÿ“–CompOp
3 mathmath: incl_D๐”ธquot_equivariant, restโ‚_surjective, restโ‚_continuous
toQuot ๐Ÿ“–CompOp
2 mathmath: toQuot_cont, toQuot_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
C_compact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
C
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
T_finite
X_compact
D_discrete ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”Discrete_of_HomeoDiscrete
Discrete_of_HomDiscrete
D_discrete_aux
Kn_discrete
D_discrete_aux ๐Ÿ“–mathematicalโ€”incl_Kn_๐”ธKn
D_iso
NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instModule_fLT
D๐”ธ_iso_top
โ€”โ€”
D๐”ธ_prodRight_units_cont ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
Dinfx
Dfx
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
Df
IsDedekindDomain.baseChangeAlgebra
D๐”ธ_prodRight_units
โ€”TensorProduct.RightActions.instIsModuleTopology_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
instIsModuleTopologyRingOfIntegersProdDinfDf
E_compact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
E
โ€”instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
existsE
E_family_compact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
Efamily
โ€”Ui.spec
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
Uf.spec
E_family_nonempty_interior ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
Efamily
โ€”Ui.spec
Uf.spec
E_family_unbounded ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
instMeasurableSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
Efamily
โ€”TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
MeasureTheory.ringHaarChar_mul_volume
smul_D๐”ธ_prodRight_symm
E_family_nonempty_interior
E_family_compact
ringHaarChar_D๐”ธ_real_surjective
E_noninjective_left ๐Ÿ“–mathematicalNumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Eโ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
existsE
E_noninjective_right ๐Ÿ“–mathematicalNumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Eโ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
NumberField.AdeleRing.isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul
MeasureTheory.ringHaarChar_apply
MeasureTheory.mem_ringHaarChar_ker
existsE
ImAux_isCompact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
C
โ€”C_compact
Kn_discrete ๐Ÿ“–mathematicalโ€”incl_Kn_๐”ธKnโ€”DiscretePi
NumberField.AdeleRing.discrete
M_compact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
M
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
inclโ‚‚_isClosedEmbedding
ImAux_isCompact
T_finite ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
T
โ€”T_finite_extracted1
inter_Discrete
discrete_includeLeft_subgroup
T_finite_extracted1 ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
Y
โ€”Y_compact
discrete_includeLeft_subgroup
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
instT2SpaceTensorProductRingOfIntegers_fLT
X_compact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
X
โ€”E_compact
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
X_meets_kernel ๐Ÿ“–mathematicalNumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
X
incl
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
E_noninjective_left
X_meets_kernel' ๐Ÿ“–mathematicalNumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
X
incl
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
E_noninjective_right
Y_compact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
Y
โ€”X_compact
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
antidiag_mem_C ๐Ÿ“–mathematicalNumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
incl
C
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
X_meets_kernel
X_meets_kernel'
NumberField.AdeleRing.units_mem_ringHaarCharacter_ker
compact_includeLeft_subgroup ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
includeLeft_subgroup
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”NumberField.AdeleRing.cocompact
discrete_principalSubgroup
TopologicalAddGroup.IsSES.ofClosedAddSubgroup
instT2SpaceAdeleRingRingOfIntegers_fLT
TopologicalAddGroup.IsSES.isOpenQuotientMap
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instIsModuleTopology_fLT
discrete_includeLeft_subgroup ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
includeLeft_subgroup
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”includeLeft_subgroup.eq_1
D_discrete
discrete_principalSubgroup ๐Ÿ“–โ€”โ€”โ€”โ€”NumberField.AdeleRing.discrete
existsE ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
not_injective_of_large_measure
E_family_unbounded
E_family_compact
incl_D๐”ธquot_continuous ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
incl
Dfx
Df
IsDedekindDomain.baseChangeAlgebra
inclโ‚
incl_D๐”ธquot
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
restโ‚_continuous
incl_D๐”ธquot_equivariant
incl_D๐”ธquot_equivariant ๐Ÿ“–mathematicalNumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
incl
Dfx
Df
IsDedekindDomain.baseChangeAlgebra
inclโ‚
restโ‚
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
incl_D๐”ธquot_surjective ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
incl
Dfx
Df
IsDedekindDomain.baseChangeAlgebra
inclโ‚
incl_D๐”ธquot
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
incl_D๐”ธquot_equivariant
restโ‚_surjective
inclโ‚‚_isClosedEmbedding ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
inclโ‚‚
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
instT2SpaceTensorProductRingOfIntegers_fLT
instBorelSpaceDf ๐Ÿ“–mathematicalโ€”Df
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
IsDedekindDomain.baseChangeAlgebra
instMeasurableSpaceDf
โ€”โ€”
instBorelSpaceDinf ๐Ÿ“–mathematicalโ€”Dinf
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
instMeasurableSpaceDinf
โ€”โ€”
instBorelSpaceTensorProductRingOfIntegers_fLT ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
instMeasurableSpaceTensorProductRingOfIntegers_fLT
โ€”โ€”
instFiniteRealDinf ๐Ÿ“–mathematicalโ€”Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
instAlgebraRealDinf
โ€”instIsScalarTowerRealInfiniteAdeleRingDinf
instFiniteRealInfiniteAdeleRing_fLT
TensorProduct.RightActions.instFinite_fLT
instIsModuleTopologyRealDinf ๐Ÿ“–mathematicalโ€”Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
instAlgebraRealDinf
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”IsModuleTopology.trans
instIsScalarTowerRealInfiniteAdeleRingDinf
instFiniteRealInfiniteAdeleRing_fLT
instIsModuleTopologyRealInfiniteAdeleRing_fLT
TensorProduct.RightActions.instIsModuleTopology_fLT
instIsModuleTopologyRingOfIntegersProdDinfDf ๐Ÿ“–mathematicalโ€”Dinf
Df
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
IsDedekindDomain.baseChangeAlgebra
instModuleRingOfIntegersProdDinfDf
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”IsModuleTopology.instProd'
TensorProduct.RightActions.instIsModuleTopology_fLT
instIsScalarTowerRealInfiniteAdeleRingDinf ๐Ÿ“–mathematicalโ€”Dinf
instAlgebraRealInfiniteAdeleRing_fLT
TensorProduct.RightActions.instSMul_fLT
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
instAlgebraRealDinf
โ€”โ€”
instSecondCountableTopologyDinf ๐Ÿ“–mathematicalโ€”Dinf
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
โ€”Module.Finite.secondCountabletopology
instFiniteRealDinf
instIsModuleTopologyRealDinf
instT2SpaceTensorProductRingOfIntegers_fLT ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”IsModuleTopology.t2Space
TensorProduct.RightActions.instFree_fLT
instT2SpaceAdeleRingRingOfIntegers_fLT
TensorProduct.RightActions.instIsModuleTopology_fLT
not_injective_of_large_measure ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLTโ€”discrete_includeLeft_subgroup
instSecondCountableTopologyAdeleRingRingOfIntegers_fLT
polish_of_locally_compact_second_countable
instT2SpaceTensorProductRingOfIntegers_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
TopologicalAddGroup.IsSES.not_injOn_of_measure_gt
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
compact_includeLeft_subgroup
restโ‚_continuous ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Dfx
Df
IsDedekindDomain.baseChangeAlgebra
restโ‚
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
D๐”ธ_prodRight_units_cont
restโ‚_surjective ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Dfx
restโ‚
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
ringHaarChar_D๐”ธ_prodRight_units_aux
restโ‚.eq_1
ringHaarChar_D๐”ธ ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
MeasureTheory.ringHaarChar
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Dinfx
Dfx
Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
Df
IsDedekindDomain.baseChangeAlgebra
D๐”ธ_prodRight_units
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT
instMeasurableSpaceDinf
instMeasurableSpaceDf
instBorelSpaceDinf
instBorelSpaceDf
instSecondCountableTopologyDinf
โ€”MeasureTheory.addEquivAddHaarChar_eq_addEquivAddHaarChar_of_continuousAddEquiv
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT
instBorelSpaceDinf
instBorelSpaceDf
instSecondCountableTopologyDinf
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
ringHaarChar_D๐”ธ_prodRight_units_aux ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
MeasureTheory.ringHaarChar
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Dinfx
Dfx
Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
Df
IsDedekindDomain.baseChangeAlgebra
D๐”ธ_prodRight_units
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
ringHaarChar_D๐”ธ_real_surjective
ringHaarChar_D๐”ธ_real_surjective ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
MeasureTheory.ringHaarChar
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
Dinfx
Dfx
Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
Df
IsDedekindDomain.baseChangeAlgebra
D๐”ธ_prodRight_units
instAlgebraRealDinf
โ€”instFiniteRealDinf
instNontrivialTensorProductOfFree_fLT_1
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
instBorelSpaceDinf
MeasureTheory.ringHaarChar_ModuleFinite_unit
instIsModuleTopologyRealDinf
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT
instBorelSpaceDf
instSecondCountableTopologyDinf
ringHaarChar_D๐”ธ
MeasureTheory.ringHaarChar_prod
MeasureTheory.ringHaarChar_real
smul_D๐”ธ_prodRight_symm ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
Dinfx
Dfx
Dinf
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
Df
IsDedekindDomain.baseChangeAlgebra
D๐”ธ_prodRight_units
D๐”ธ_prodRight
โ€”โ€”
toQuot_cont ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
incl
toQuot
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
toQuot_surjective ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
MeasureTheory.ringHaarChar_ker
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instMeasurableSpaceTensorProductRingOfIntegers_fLT
instBorelSpaceTensorProductRingOfIntegers_fLT
incl
toQuot
M
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
instBorelSpaceTensorProductRingOfIntegers_fLT
antidiag_mem_C

NumberField.AdeleRing.DivisionAlgebra.Aux.Uf

Theorems

NameKindAssumesProvesValidatesDepends On
spec ๐Ÿ“–mathematicalโ€”IsDedekindDomain.baseChangeAlgebra
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
NumberField.AdeleRing.DivisionAlgebra.Aux.Uf
โ€”TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT

NumberField.AdeleRing.DivisionAlgebra.Aux.Ui

Theorems

NameKindAssumesProvesValidatesDepends On
spec ๐Ÿ“–mathematicalโ€”NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
NumberField.AdeleRing.DivisionAlgebra.Aux.Ui
โ€”TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT

NumberField.FiniteAdeleRing.DivisionAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
finiteDoubleCoset ๐Ÿ“–mathematicalNumberField.AdeleRing.DivisionAlgebra.Aux.Dfx
NumberField.AdeleRing.DivisionAlgebra.Aux.Df
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
IsDedekindDomain.baseChangeAlgebra
NumberField.AdeleRing.DivisionAlgebra.Aux.inclโ‚โ€”units_cocompact
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
DoubleCoset.union_image_mk_rightRel
DoubleCoset.iUnion_finset_quotTodoubleCoset
DoubleCoset.union_finset_rightrel_cover
units_cocompact ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.DivisionAlgebra.Aux.Dfx
NumberField.AdeleRing.DivisionAlgebra.Aux.Df
IsDedekindDomain.baseChangeAlgebra
NumberField.AdeleRing.DivisionAlgebra.Aux.inclโ‚
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”TensorProduct.RightActions.instIsTopologicalRing_fLT_1
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
NumberField.AdeleRing.locallyCompactSpace
NumberField.AdeleRing.DivisionAlgebra.Aux.instBorelSpaceTensorProductRingOfIntegers_fLT
NumberField.AdeleRing.DivisionAlgebra.compact_quotient
NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D๐”ธquot_continuous
NumberField.AdeleRing.DivisionAlgebra.Aux.incl_D๐”ธquot_surjective

NumberField.InfiniteAdeleRing

Definitions

NameCategoryTheorems
Dinf_tensorPi_equiv_piTensor ๐Ÿ“–CompOpโ€”
Dinf_tensorPi_equiv_piTensor_aux ๐Ÿ“–CompOpโ€”
Dinf_tensorPi_equiv_piTensor_mulEquiv ๐Ÿ“–CompOpโ€”
instAlgebraRealCompletion_fLT ๐Ÿ“–CompOp
6 mathmath: instIsModuleTopologyRealCompletion_fLT, instFiniteRealCompletion_fLT, algebraMap_completion_def, algebraMap_completion, instContinuousSMulRealCompletion_fLT, instIsScalarTowerRealCompletionTensorProduct_fLT
instAlgebraRealTensorProductCompletion_fLT ๐Ÿ“–CompOp
3 mathmath: instIsModuleTopologyRealTensorProductCompletion_fLT, instIsModuleTopologyRealForallTensorProductCompletion_fLT, instIsScalarTowerRealCompletionTensorProduct_fLT
real_to_completion ๐Ÿ“–CompOp
1 mathmath: algebraMap_completion_def

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_completion ๐Ÿ“–mathematicalโ€”instAlgebraRealInfiniteAdeleRing_fLT
instAlgebraRealCompletion_fLT
โ€”โ€”
algebraMap_completion_def ๐Ÿ“–mathematicalโ€”instAlgebraRealCompletion_fLT
real_to_completion
โ€”โ€”
instContinuousSMulRealCompletion_fLT ๐Ÿ“–mathematicalโ€”instAlgebraRealCompletion_fLTโ€”algebraMap_completion_def
instFiniteRealCompletion_fLT ๐Ÿ“–mathematicalโ€”instAlgebraRealCompletion_fLTโ€”โ€”
instIsModuleTopologyRealCompletion_fLT ๐Ÿ“–mathematicalโ€”instAlgebraRealCompletion_fLTโ€”instContinuousSMulRealCompletion_fLT
instFiniteRealCompletion_fLT
instIsModuleTopologyRealForallTensorProductCompletion_fLT ๐Ÿ“–mathematicalโ€”WithAbs.instUniformContinuousConstSMulReal_fLT
instAlgebraRealTensorProductCompletion_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”WithAbs.instUniformContinuousConstSMulReal_fLT
instIsModuleTopologyRealTensorProductCompletion_fLT
instIsModuleTopologyRealTensorProductCompletion_fLT ๐Ÿ“–mathematicalโ€”WithAbs.instUniformContinuousConstSMulReal_fLT
instAlgebraRealTensorProductCompletion_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”WithAbs.instUniformContinuousConstSMulReal_fLT
IsModuleTopology.trans
instIsScalarTowerRealCompletionTensorProduct_fLT
instFiniteRealCompletion_fLT
instIsModuleTopologyRealCompletion_fLT
TensorProduct.RightActions.instIsModuleTopology_fLT
instIsScalarTowerRealCompletionTensorProduct_fLT ๐Ÿ“–mathematicalโ€”WithAbs.instUniformContinuousConstSMulReal_fLT
instAlgebraRealCompletion_fLT
TensorProduct.RightActions.instSMul_fLT
instAlgebraRealTensorProductCompletion_fLT
โ€”WithAbs.instUniformContinuousConstSMulReal_fLT
instSecondCountableTopologyTensorProductCompletion_fLT ๐Ÿ“–mathematicalโ€”WithAbs.instUniformContinuousConstSMulReal_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
โ€”Module.Finite.secondCountabletopology
WithAbs.instUniformContinuousConstSMulReal_fLT
instSecondCountableTopologyCompletion_fLT
TensorProduct.RightActions.instFinite_fLT
TensorProduct.RightActions.instIsModuleTopology_fLT
isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul ๐Ÿ“–mathematicalโ€”NumberField.AdeleRing.DivisionAlgebra.Aux.Dinf
instAlgebra_fLT_1
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
NumberField.AdeleRing.DivisionAlgebra.Aux.instMeasurableSpaceDinf
NumberField.AdeleRing.DivisionAlgebra.Aux.instBorelSpaceDinf
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
ContinuousAddEquiv.mulLeft
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
ContinuousAddEquiv.mulRight
โ€”WithAbs.instUniformContinuousConstSMulReal_fLT
NumberField.AdeleRing.DivisionAlgebra.Aux.instBorelSpaceDinf
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
instSecondCountableTopologyTensorProductCompletion_fLT
MeasureTheory.addEquivAddHaarChar_eq_addEquivAddHaarChar_of_continuousAddEquiv
tensorPi_equiv_piTensor_map_mul
isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul_aux
isCentralSimple_infinite_addHaarScalarFactor_left_mul_eq_right_mul_aux ๐Ÿ“–mathematicalWithAbs.instUniformContinuousConstSMulReal_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
instSecondCountableTopologyTensorProductCompletion_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
ContinuousAddEquiv.mulLeft
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
ContinuousAddEquiv.mulRight
โ€”WithAbs.instUniformContinuousConstSMulReal_fLT
instSecondCountableTopologyTensorProductCompletion_fLT
TensorProduct.RightActions.instIsTopologicalAddGroup_fLT
TensorProduct.RightActions.instLocallyCompactSpaceOfIsTopologicalRing_fLT
TensorProduct.RightActions.instIsTopologicalRing_fLT_1
MeasureTheory.addEquivAddHaarChar_piCongrRight
IsSimpleRing.ringHaarChar_eq_addEquivAddHaarChar_mulRight
instBorelSpaceCompletion_fLT
TensorProduct.RightActions.instFinite_fLT
instIsSimpleRingTensorProductOfIsCentral_fLT
TensorProduct.RightActions.instIsModuleTopology_fLT
instIsCentralTensorProduct_fLT_1
instSecondCountableTopologyCompletion_fLT
tensorPi_equiv_piTensor_map_mul ๐Ÿ“–mathematicalโ€”WithAbs.instUniformContinuousConstSMulReal_fLT
tensorPi_equiv_piTensor
NumberField.AdeleRing.DivisionAlgebra.Aux.Dinf
instAlgebra_fLT_1
โ€”WithAbs.instUniformContinuousConstSMulReal_fLT
tensorPi_equiv_piTensor_apply

(root)

Definitions

NameCategoryTheorems
termD_๐”ธ ๐Ÿ“–CompOpโ€”

---

โ† Back to Index