Documentation Verification Report

Automorphic

📁 Source: FLT/GaloisRepresentation/Automorphic.lean

Statistics

MetricCount
DefinitionsIsAutomorphicOfLevel, instNormedSpacePadicPadicAlgCl_fLT
2
Theoremscyclic_base_change, instContinuousSMulPadicIntAlgebraicClosurePadic_fLT, instIsQuaternionAlgebraTensorProduct
3
Total5
⚠️ With sorrycyclic_base_change, instIsQuaternionAlgebraTensorProduct
2

GaloisRep

Definitions

NameCategoryTheorems
IsAutomorphicOfLevel 📖MathDef
1 mathmath: cyclic_base_change

(root)

Definitions

NameCategoryTheorems
instNormedSpacePadicPadicAlgCl_fLT 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
cyclic_base_change 📖 ⚠️mathematicalGaloisRep.det
GaloisRep.conj
GaloisRep.baseChange
GaloisRep.IsFlatAt
GaloisRep.IsUnramifiedAt
localTameAbelianInertiaGroup
GaloisRep.ker
GaloisRep
instFunLikeGaloisRepAbsoluteGaloisGroupEnd
GaloisRep.toLocal
GaloisRep.IsAutomorphicOfLevel
instContinuousSMulPadicIntAlgebraicClosurePadic_fLT
GaloisRep.map
IsDedekindDomain.HeightOneSpectrum.preimageComapFinset
instContinuousSMulPadicIntAlgebraicClosurePadic_fLT
instContinuousSMulPadicIntAlgebraicClosurePadic_fLT 📖
instIsQuaternionAlgebraTensorProduct 📖 ⚠️mathematicalIsQuaternionAlgebra

---

← Back to Index