Documentation Verification Report

ModuleTopology

📁 Source: FLT/Mathlib/Topology/Algebra/Module/ModuleTopology.lean

Statistics

MetricCount
DefinitionsequivFun_homeo, continuousAlgEquivOfAlgEquiv, continuousAlgEquivOfIsScalarTower, continuousLinearEquiv, leftAlgebra, leftModule, rightAlgebra, rightModule
8
TheoremsmoduleTopology_le, equivFun_homeo_apply, equivFun_homeo_symm_apply, continuous_bilinear_of_finite_free, topologicalRing, instLeftAlgebra, instLeftModule, instRightAlgebra, instRightModule, continuousAlgEquivOsIfScalarTower_apply, continuousLinearEquiv_apply, continuousLinearEquiv_symm_apply, continuous_mul, continuous_mul', iff_Continuous_algebraMap, instProd', isTopologicalModule, locallyCompactSpaceOfFinite, of_continuous_isOpenMap_algebraMap, of_inverse, of_isOpenMap_surjective, of_isQuotientMap, t2Space, t2Space', topologicalSemiring, trans, secondCountabletopology, iff, isModuleTopology, instFinite_leftAlgebra, instFinite_rightAlgebra, trans
32
Total40

Algebra

Theorems

NameKindAssumesProvesValidatesDepends On
moduleTopology_le 📖IsTopologicalModule.toContinuousSMul

IsModuleTopology

Definitions

NameCategoryTheorems
continuousAlgEquivOfAlgEquiv 📖CompOp
continuousAlgEquivOfIsScalarTower 📖CompOp
1 mathmath: continuousAlgEquivOsIfScalarTower_apply
continuousLinearEquiv 📖CompOp
2 mathmath: continuousLinearEquiv_symm_apply, continuousLinearEquiv_apply

Theorems

NameKindAssumesProvesValidatesDepends On
continuousAlgEquivOsIfScalarTower_apply 📖mathematicalcontinuousAlgEquivOfIsScalarTower
continuousLinearEquiv_apply 📖mathematicalcontinuousLinearEquiv
continuousLinearEquiv_symm_apply 📖mathematicalcontinuousLinearEquiv
continuous_mul 📖
continuous_mul' 📖
iff_Continuous_algebraMap 📖mathematicalIsTopologicalModuleIsTopologicalModule.toContinuousSMul
instProd' 📖mathematicalProd.leftModule
Prod.rightModule
Prod.instLeftModule
Prod.instRightModule
isTopologicalModule 📖mathematicalIsTopologicalModule
locallyCompactSpaceOfFinite 📖
of_continuous_isOpenMap_algebraMap 📖ModuleTopology.isModuleTopology
of_inverse 📖of_isQuotientMap
of_isOpenMap_surjective 📖of_isQuotientMap
of_isQuotientMap 📖ModuleTopology.iff
t2Space 📖
t2Space' 📖t2Space
topologicalSemiring 📖continuous_mul'
trans 📖ModuleTopology.iff
moduleTopology.trans

IsModuleTopology.Module

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_bilinear_of_finite_free 📖
topologicalRing 📖IsModuleTopology.continuous_mul

IsModuleTopology.Module.Basis

Definitions

NameCategoryTheorems
equivFun_homeo 📖CompOp
2 mathmath: equivFun_homeo_symm_apply, equivFun_homeo_apply

Theorems

NameKindAssumesProvesValidatesDepends On
equivFun_homeo_apply 📖mathematicalequivFun_homeo
equivFun_homeo_symm_apply 📖mathematicalequivFun_homeo

IsModuleTopology.Prod

Theorems

NameKindAssumesProvesValidatesDepends On
instLeftAlgebra 📖mathematicalProd.leftAlgebraIsModuleTopology.of_continuous_isOpenMap_algebraMap
instLeftModule 📖mathematicalProd.leftModuleIsModuleTopology.trans
Prod.instFinite_leftAlgebra
instLeftAlgebra
instRightAlgebra 📖mathematicalProd.rightAlgebraIsModuleTopology.of_continuous_isOpenMap_algebraMap
instRightModule 📖mathematicalProd.rightModuleIsModuleTopology.trans
Prod.instFinite_rightAlgebra
instRightAlgebra

Module.Finite

Theorems

NameKindAssumesProvesValidatesDepends On
secondCountabletopology 📖

ModuleTopology

Theorems

NameKindAssumesProvesValidatesDepends On
iff 📖
isModuleTopology 📖

Prod

Definitions

NameCategoryTheorems
leftAlgebra 📖CompOp
1 mathmath: IsModuleTopology.Prod.instLeftAlgebra
leftModule 📖CompOp
3 mathmath: IsModuleTopology.instProd', IsModuleTopology.Prod.instLeftModule, instFinite_leftAlgebra
rightAlgebra 📖CompOp
1 mathmath: IsModuleTopology.Prod.instRightAlgebra
rightModule 📖CompOp
3 mathmath: IsModuleTopology.instProd', IsModuleTopology.Prod.instRightModule, instFinite_rightAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
instFinite_leftAlgebra 📖mathematicalleftModule
instFinite_rightAlgebra 📖mathematicalrightModule

moduleTopology

Theorems

NameKindAssumesProvesValidatesDepends On
trans 📖IsModuleTopology.isTopologicalModule
Algebra.moduleTopology_le
ModuleTopology.isModuleTopology

---

← Back to Index