AdeleRing
π Source: FLT/NumberField/AdeleRing.lean
Statistics
FiniteAdeleRing
Definitions
| Name | Category | Theorems |
|---|---|---|
toAdicCompletion π | CompOp | β |
NumberField.AdeleRing
Definitions
Theorems
Rat.AdeleRing
Definitions
| Name | Category | Theorems |
|---|---|---|
fundamentalDomain π | CompOp |
Theorems
Rat.FiniteAdeleRing
Definitions
| Name | Category | Theorems |
|---|---|---|
padicEquiv π | CompOp |
Theorems
Rat.InfiniteAdeleRing
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
exists_sub_norm_le_one π | mathematical | β | NumberField.InfiniteAdeleRing.instAlgebra_fLT_1 | β | Rat.infinitePlace_isRealexists_unique_sub_mem_Ico |
exists_unique_sub_mem_Ico π | β | β | β | β | Rat.infinitePlace_isRealRat.ringOfIntegersEquiv_symm_coeInt.eq_floor |
(root)
Definitions
| Name | Category | Theorems |
|---|---|---|
instVAddRatAdeleRingRingOfIntegers_fLT π | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
instProperSpaceCompletion_fLT π | β | β | β | β | β |
---