Documentation Verification Report

AdeleRing

πŸ“ Source: FLT/NumberField/AdeleRing.lean

Statistics

MetricCount
DefinitionstoAdicCompletion, ModuleBaseChangeAddEquiv, ModuleBaseChangeAddEquiv', ModuleBaseChangeContinuousAddEquiv, ModuleBaseChangeContinuousSemilinearMap, baseChange, baseChangeAdeleAlgEquiv, baseChangeAdeleAlgHom, baseChangeAdeleEquiv, baseChangeAlgAdeleEquiv, baseChangeEquiv, baseChangeSemialgHom, instAlgebraRingOfIntegers_fLT, instAlgebraRingOfIntegers_fLT_1, piEquiv, piQuotientEquiv, tensorProductEquivPi, term𝔸_, fundamentalDomain, padicEquiv, instVAddRatAdeleRingRingOfIntegers_fLT
21
TheoremsModuleBaseChangeAddEquiv_apply, ModuleBaseChangeContinuousSemilinearMap_apply, baseChangeAdeleAlgEquiv_apply, baseChangeAdeleAlgHom_bijective, baseChangeEquiv_tsum_apply_right, cocompact, comap_piEquiv_principalSubgroup, discrete, instBaseChangeIsModuleTopology, instFiniteRingOfIntegers_fLT, instIsScalarTowerRingOfIntegers_fLT, instPiIsModuleTopology, moduleBaseChangeContinuousAddEquiv_apply_eq_moduleBaseChangeAddEquiv'_apply, piEquiv_apply_of_algebraMap, piEquiv_map_principalSubgroup, piEquiv_mem_principalSubgroup, zero_discrete, cocompact, fundamentalDomain_traversal, integral_and_norm_lt_one, isAddFundamentalDomain, mem_fundamentalDomain, zero_discrete, instFactPrimeValNat_fLT, padicEquiv_bijOn, sub_mem_integralAdeles, exists_sub_norm_le_one, exists_unique_sub_mem_Ico, instProperSpaceCompletion_fLT
29
Total50

FiniteAdeleRing

Definitions

NameCategoryTheorems
toAdicCompletion πŸ“–CompOpβ€”

NumberField.AdeleRing

Definitions

NameCategoryTheorems
ModuleBaseChangeAddEquiv πŸ“–CompOp
1 mathmath: ModuleBaseChangeAddEquiv_apply
ModuleBaseChangeAddEquiv' πŸ“–CompOp
1 mathmath: moduleBaseChangeContinuousAddEquiv_apply_eq_moduleBaseChangeAddEquiv'_apply
ModuleBaseChangeContinuousAddEquiv πŸ“–CompOp
1 mathmath: moduleBaseChangeContinuousAddEquiv_apply_eq_moduleBaseChangeAddEquiv'_apply
ModuleBaseChangeContinuousSemilinearMap πŸ“–CompOp
1 mathmath: ModuleBaseChangeContinuousSemilinearMap_apply
baseChange πŸ“–CompOpβ€”
baseChangeAdeleAlgEquiv πŸ“–CompOp
1 mathmath: baseChangeAdeleAlgEquiv_apply
baseChangeAdeleAlgHom πŸ“–CompOp
1 mathmath: baseChangeAdeleAlgHom_bijective
baseChangeAdeleEquiv πŸ“–CompOpβ€”
baseChangeAlgAdeleEquiv πŸ“–CompOpβ€”
baseChangeEquiv πŸ“–CompOp
1 mathmath: baseChangeEquiv_tsum_apply_right
baseChangeSemialgHom πŸ“–CompOpβ€”
instAlgebraRingOfIntegers_fLT πŸ“–CompOp
52 mathmath: DivisionAlgebra.Aux.T_finite_extracted1, Rat.AdeleRing.mem_fundamentalDomain, MeasureTheory.addHaarScalarFactor_tensor_adeles_eq_one, ModuleBaseChangeContinuousSemilinearMap_apply, DivisionAlgebra.Aux.compact_includeLeft_subgroup, DivisionAlgebra.Aux.C_compact, DivisionAlgebra.Aux.X_compact, DivisionAlgebra.Aux.incl_D𝔸quot_surjective, DivisionAlgebra.Aux.Y_compact, piEquiv_map_principalSubgroup, DivisionAlgebra.Aux.ringHaarChar_D𝔸, DivisionAlgebra.Aux.incl_D𝔸quot_continuous, DivisionAlgebra.Aux.discrete_includeLeft_subgroup, DivisionAlgebra.Aux.E_family_compact, DivisionAlgebra.Aux.smul_D𝔸_prodRight_symm, Rat.AdeleRing.zero_discrete, ModuleBaseChangeAddEquiv_apply, DivisionAlgebra.Aux.E_compact, DivisionAlgebra.Aux.toQuot_cont, baseChangeEquiv_tsum_apply_right, DivisionAlgebra.Aux.instBorelSpaceTensorProductRingOfIntegers_fLT, instIsScalarTowerRingOfIntegers_fLT, units_mem_ringHaarCharacter_ker, DivisionAlgebra.Aux.ImAux_isCompact, DivisionAlgebra.Aux.toQuot_surjective, isCentralSimple_addHaarScalarFactor_left_mul_eq_right_mul, DivisionAlgebra.Aux.not_injective_of_large_measure, addEquivAddHaarChar_mulRight_unit_eq_one, discrete, comap_piEquiv_principalSubgroup, MeasureTheory.ringHaarChar_adeles_units_rat_eq_one, DivisionAlgebra.Aux.T_finite, MeasureTheory.addHaarScalarFactor_tensor_adeles_rat_eq_one, DivisionAlgebra.Aux.D𝔸_prodRight_units_cont, DivisionAlgebra.Aux.ringHaarChar_D𝔸_prodRight_units_aux, DivisionAlgebra.Aux.instT2SpaceTensorProductRingOfIntegers_fLT, baseChangeAdeleAlgEquiv_apply, DivisionAlgebra.compact_quotient, moduleBaseChangeContinuousAddEquiv_apply_eq_moduleBaseChangeAddEquiv'_apply, DivisionAlgebra.Aux.rest₁_surjective, DivisionAlgebra.Aux.rest₁_continuous, DivisionAlgebra.Aux.ringHaarChar_D𝔸_real_surjective, DivisionAlgebra.Aux.M_compact, zero_discrete, DivisionAlgebra.Aux.inclβ‚‚_isClosedEmbedding, piEquiv_mem_principalSubgroup, DivisionAlgebra.Aux.E_family_unbounded, baseChangeAdeleAlgHom_bijective, DivisionAlgebra.Aux.E_family_nonempty_interior, DivisionAlgebra.Aux.D_discrete, DivisionAlgebra.Aux.D_discrete_aux, DivisionAlgebra.Aux.existsE
instAlgebraRingOfIntegers_fLT_1 πŸ“–CompOp
6 mathmath: ModuleBaseChangeContinuousSemilinearMap_apply, instBaseChangeIsModuleTopology, ModuleBaseChangeAddEquiv_apply, baseChangeAdeleAlgEquiv_apply, instFiniteRingOfIntegers_fLT, baseChangeAdeleAlgHom_bijective
piEquiv πŸ“–CompOp
4 mathmath: piEquiv_apply_of_algebraMap, piEquiv_map_principalSubgroup, comap_piEquiv_principalSubgroup, piEquiv_mem_principalSubgroup
piQuotientEquiv πŸ“–CompOpβ€”
tensorProductEquivPi πŸ“–CompOpβ€”
term𝔸_ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ModuleBaseChangeAddEquiv_apply πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
ModuleBaseChangeAddEquiv
instAlgebraRingOfIntegers_fLT_1
β€”baseChangeAdeleAlgEquiv_apply
ModuleBaseChangeContinuousSemilinearMap_apply πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT_1
instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instModule_fLT
ModuleBaseChangeContinuousSemilinearMap
β€”ModuleBaseChangeAddEquiv_apply
baseChangeAdeleAlgEquiv_apply πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
baseChangeAdeleAlgEquiv
instAlgebraRingOfIntegers_fLT_1
β€”β€”
baseChangeAdeleAlgHom_bijective πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instAlgebra_fLT
instAlgebraRingOfIntegers_fLT_1
baseChangeAdeleAlgHom
β€”TensorProduct.RightActions.instIsScalarTower_fLT
instIsScalarTowerRingOfIntegers_fLT
baseChangeEquiv_tsum_apply_right πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
baseChangeEquiv
β€”β€”
cocompact πŸ“–β€”β€”β€”β€”Rat.AdeleRing.cocompact
comap_piEquiv_principalSubgroup πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
piEquiv
β€”piEquiv_map_principalSubgroup
discrete πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLTβ€”zero_discrete
Homeomorph.subLeft.congr_simp
instBaseChangeIsModuleTopology πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT_1β€”IsModuleTopology.instProd'
NumberField.InfiniteAdeleRing.instIsModuleTopology_fLT
IsDedekindDomain.instIsModuleTopologyFiniteAdeleRing_fLT
instFiniteRingOfIntegers_fLT πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT_1β€”TensorProduct.RightActions.instFinite_fLT
instIsScalarTowerRingOfIntegers_fLT πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLTβ€”β€”
instPiIsModuleTopology πŸ“–β€”β€”β€”β€”β€”
moduleBaseChangeContinuousAddEquiv_apply_eq_moduleBaseChangeAddEquiv'_apply πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
TensorProduct.RightActions.instTopologicalSpaceOfFinite_fLT
ModuleBaseChangeContinuousAddEquiv
TensorProduct.RightActions.instModule_fLT
ModuleBaseChangeAddEquiv'
β€”β€”
piEquiv_apply_of_algebraMap πŸ“–mathematicalinstAlgebraRingOfIntegers_fLTpiEquiv
Module.Finite.equivPi
β€”TensorProduct.AlgebraTensorModule.finiteEquivPi_symm_apply
TensorProduct.RightActions.Algebra.TensorProduct.comm_apply_tmul
baseChangeEquiv_tsum_apply_right
piEquiv_map_principalSubgroup πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
piEquiv
β€”piEquiv_mem_principalSubgroup
piEquiv_apply_of_algebraMap
piEquiv_mem_principalSubgroup πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLT
piEquiv
β€”piEquiv_apply_of_algebraMap
zero_discrete πŸ“–mathematicalβ€”instAlgebraRingOfIntegers_fLTβ€”Rat.AdeleRing.zero_discrete
piEquiv_apply_of_algebraMap

Rat.AdeleRing

Definitions

NameCategoryTheorems
fundamentalDomain πŸ“–CompOp
2 mathmath: mem_fundamentalDomain, isAddFundamentalDomain

Theorems

NameKindAssumesProvesValidatesDepends On
cocompact πŸ“–β€”β€”β€”β€”instProperSpaceCompletion_fLT
instCompactSpaceSubtypeFiniteAdeleRingRingOfIntegersMemSubringIntegralAdeles
RestrictedProduct.mem_structureSubring_iff
Rat.InfiniteAdeleRing.exists_sub_norm_le_one
Rat.FiniteAdeleRing.sub_mem_integralAdeles
fundamentalDomain_traversal πŸ“–β€”fundamentalDomain
NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
β€”β€”integral_and_norm_lt_one
Rat.infinitePlace_isReal
integral_and_norm_lt_one πŸ“–β€”IsDedekindDomain.baseChangeAlgebra
NumberField.InfiniteAdeleRing.instAlgebra_fLT_1
β€”β€”β€”
isAddFundamentalDomain πŸ“–mathematicalβ€”instVAddRatAdeleRingRingOfIntegers_fLT
instMeasurableSpaceCompletion_fLT
instMeasurableSpaceFiniteAdeleRingRingOfIntegers_fLT
fundamentalDomain
instBorelSpaceCompletion_fLT
instBorelSpaceFiniteAdeleRingRingOfIntegers_fLT
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT
β€”instBorelSpaceCompletion_fLT
instBorelSpaceFiniteAdeleRingRingOfIntegers_fLT
instLocallyCompactSpaceFiniteAdeleRingRingOfIntegers_fLT
Rat.infinitePlace_isReal
NumberField.isOpenAdicCompletionIntegers
mem_fundamentalDomain
fundamentalDomain_traversal
mem_fundamentalDomain πŸ“–mathematicalβ€”fundamentalDomain
NumberField.AdeleRing.instAlgebraRingOfIntegers_fLT
β€”Rat.FiniteAdeleRing.sub_mem_integralAdeles
Rat.infinitePlace_isReal
Rat.InfiniteAdeleRing.exists_unique_sub_mem_Ico
zero_discrete πŸ“–mathematicalβ€”NumberField.AdeleRing.instAlgebraRingOfIntegers_fLTβ€”integral_and_norm_lt_one

Rat.FiniteAdeleRing

Definitions

NameCategoryTheorems
padicEquiv πŸ“–CompOp
1 mathmath: padicEquiv_bijOn

Theorems

NameKindAssumesProvesValidatesDepends On
instFactPrimeValNat_fLT πŸ“–β€”β€”β€”β€”β€”
padicEquiv_bijOn πŸ“–mathematicalβ€”instFactPrimeValNat_fLT
IsDedekindDomain.baseChangeAlgebra
RestrictedProduct.instAlgebraRatPrimesPadicValNatPrimeCoeSubringSubringCofinite_fLT
padicEquiv
IsDedekindDomain.FiniteAdeleRing.integralAdeles
RestrictedProduct.structureSubring
β€”RingEquiv.restrictedProductCongr_bijOn_structureSubring
instFactPrimeValNat_fLT
sub_mem_integralAdeles πŸ“–mathematicalβ€”IsDedekindDomain.FiniteAdeleRing.integralAdeles
IsDedekindDomain.baseChangeAlgebra
β€”RestrictedProduct.instFactPrimeValNat_fLT
instFactPrimeValNat_fLT
RestrictedProduct.padic_exists_sub_mem_structureSubring
padicEquiv_bijOn

Rat.InfiniteAdeleRing

Theorems

NameKindAssumesProvesValidatesDepends On
exists_sub_norm_le_one πŸ“–mathematicalβ€”NumberField.InfiniteAdeleRing.instAlgebra_fLT_1β€”Rat.infinitePlace_isReal
exists_unique_sub_mem_Ico
exists_unique_sub_mem_Ico πŸ“–β€”β€”β€”β€”Rat.infinitePlace_isReal
Rat.ringOfIntegersEquiv_symm_coe
Int.eq_floor

(root)

Definitions

NameCategoryTheorems
instVAddRatAdeleRingRingOfIntegers_fLT πŸ“–CompOp
1 mathmath: Rat.AdeleRing.isAddFundamentalDomain

Theorems

NameKindAssumesProvesValidatesDepends On
instProperSpaceCompletion_fLT πŸ“–β€”β€”β€”β€”β€”

---

← Back to Index