Documentation Verification Report

Dimension

📁 Source: FLT/NumberField/InfinitePlace/Dimension.lean

Statistics

MetricCount
DefinitionsalgEquivComplex, instAlgebraValAndEqComapAlgebraMapIsRamified_fLT, algEquivComplex, algEquivComplexStar, algEquivReal, instAlgebraValAndEqComapAlgebraMapIsUnramifiedComplexOfIsConjugateLiftMk, instAlgebraValAndEqComapAlgebraMapIsUnramified_fLT, algEquivComplexOfComplex, algEquivComplexOfComplexStar, algEquivRealOfReal, algebraComplexStar, algebraReal, instAlgebraComplex_fLT, instAlgebraValEqComapAlgebraMap_fLT, algHomEquivIsExtension, instAlgebraWithAbsRealValAbsoluteValueExistsRingHomComplexEqPlace, ofIsMixedExtension, ofIsMixedExtension_conjugate, sumEquivIsMixedExtension, toIsMixedExtension, equivIsUnmixedExtension, instCoeExtension_1, ofIsUnmixedExtension, toIsUnmixedExtension, ramificationIdx
25
TheoremsextensionEmbedding_algebraMap, finrank_eq_two, instFactIsComplexValAndEqComapAlgebraMapIsRamified_fLT, instIsScalarTowerRealComplex_fLT, instIsScalarTowerValAndEqComapAlgebraMapIsRamifiedComplex_fLT, extensionEmbeddingOfIsReal_algebraMap, extensionEmbedding_algebraMap, extensionEmbedding_algebraMap_star, finrank_eq_one, instFactIsComplexValAndEqComapAlgebraMapIsUnramified_fLT, instFactIsRealValAndEqComapAlgebraMapIsUnramified_fLT, instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplexOfIsLiftMk, instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplex_fLT, instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedReal_fLT, coe_extensionEmbeddingOfIsReal, finrank_eq_ramificationIdx, card_isUnramified_add_two_mul_card_isRamified, isExtension_algHom, sum_ramificationIdx_eq, not_isMixedExtension, not_isMixedExtension_conjugate, instIsConjugateLiftMkEqComapAlgebraMapValAndIsRamified, instIsLiftMkEqComapAlgebraMapValAndIsRamified, isExtension_conjugate_embedding, isExtension_embedding, isMixedExtension, isMixedExtension_conjugate, ofIsMixedExtension_embedding, toIsMixedExtension_injective, toIsMixedExtension_surjective, two_mul_card_eq, card_eq, instIsLiftMkEqComapAlgebraMapValAndIsUnramifiedOfFactIsReal, isComplex_base, isReal_of_isReal, isUnmixedExtension, isUnmixedExtension_conjugate, not_isExtension_iff_isExtension_conj, ofIsUnmixedExtension_embedding, ofIsUnmixedExtension_embedding_isExtension, toIsUnmixedExtension_injective, toIsUnmixedExtension_ofIsUnmixedExtension, toIsUnmixedExtension_surjective, comap_embedding_eq_of_isReal, comap_mk_of_isExtension, ramificationIdx_eq_one, ramificationIdx_eq_two
47
Total72

NumberField.InfinitePlace

Definitions

NameCategoryTheorems
ramificationIdx 📖CompOp
4 mathmath: Completion.finrank_eq_ramificationIdx, ramificationIdx_eq_one, ramificationIdx_eq_two, Extension.sum_ramificationIdx_eq

Theorems

NameKindAssumesProvesValidatesDepends On
comap_embedding_eq_of_isReal 📖
comap_mk_of_isExtension 📖NumberField.ComplexEmbedding.IsExtension
ramificationIdx_eq_one 📖mathematicalramificationIdxramificationIdx.eq_1
ramificationIdx_eq_two 📖mathematicalramificationIdxramificationIdx.eq_1

NumberField.InfinitePlace.Completion

Definitions

NameCategoryTheorems
algEquivComplexOfComplex 📖CompOp
algEquivComplexOfComplexStar 📖CompOp
algEquivRealOfReal 📖CompOp
algebraComplexStar 📖CompOp
algebraReal 📖CompOp
2 mathmath: RamifiedExtension.instIsScalarTowerRealComplex_fLT, UnramifiedExtension.instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedReal_fLT
instAlgebraComplex_fLT 📖CompOp
4 mathmath: RamifiedExtension.instIsScalarTowerRealComplex_fLT, UnramifiedExtension.instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplex_fLT, RamifiedExtension.instIsScalarTowerValAndEqComapAlgebraMapIsRamifiedComplex_fLT, UnramifiedExtension.instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplexOfIsLiftMk
instAlgebraValEqComapAlgebraMap_fLT 📖CompOp
2 mathmath: instIsModuleTopologyValEqComapAlgebraMap_fLT, finrank_eq_ramificationIdx

Theorems

NameKindAssumesProvesValidatesDepends On
coe_extensionEmbeddingOfIsReal 📖
finrank_eq_ramificationIdx 📖mathematicalinstAlgebraValEqComapAlgebraMap_fLT
NumberField.InfinitePlace.ramificationIdx
NumberField.InfinitePlace.RamifiedExtension.isReal
RamifiedExtension.finrank_eq_two
NumberField.InfinitePlace.RamifiedExtension.isRamified
UnramifiedExtension.finrank_eq_one
NumberField.InfinitePlace.UnramifiedExtension.isUnramified

NumberField.InfinitePlace.Completion.RamifiedExtension

Definitions

NameCategoryTheorems
algEquivComplex 📖CompOp
instAlgebraValAndEqComapAlgebraMapIsRamified_fLT 📖CompOp
3 mathmath: extensionEmbedding_algebraMap, finrank_eq_two, instIsScalarTowerValAndEqComapAlgebraMapIsRamifiedComplex_fLT

Theorems

NameKindAssumesProvesValidatesDepends On
extensionEmbedding_algebraMap 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsRamified_fLTAbsoluteValue.Completion.semialgHomOfComp_coe
NumberField.InfinitePlace.RamifiedExtension.comap_eq
NumberField.InfinitePlace.comap_embedding_eq_of_isReal
NumberField.InfinitePlace.RamifiedExtension.isReal_comap
finrank_eq_two 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsRamified_fLTinstIsScalarTowerRealComplex_fLT
instFactIsComplexValAndEqComapAlgebraMapIsRamified_fLT 📖NumberField.InfinitePlace.RamifiedExtension.isComplex
instIsScalarTowerRealComplex_fLT 📖mathematicalNumberField.InfinitePlace.Completion.algebraReal
NumberField.InfinitePlace.Completion.instAlgebraComplex_fLT
NumberField.InfinitePlace.Completion.coe_extensionEmbeddingOfIsReal
instIsScalarTowerValAndEqComapAlgebraMapIsRamifiedComplex_fLT 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsRamified_fLT
NumberField.InfinitePlace.Completion.instAlgebraComplex_fLT
extensionEmbedding_algebraMap

NumberField.InfinitePlace.Completion.UnramifiedExtension

Definitions

NameCategoryTheorems
algEquivComplex 📖CompOp
algEquivComplexStar 📖CompOp
algEquivReal 📖CompOp
instAlgebraValAndEqComapAlgebraMapIsUnramifiedComplexOfIsConjugateLiftMk 📖CompOp
1 mathmath: instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplex_fLT
instAlgebraValAndEqComapAlgebraMapIsUnramified_fLT 📖CompOp
7 mathmath: extensionEmbedding_algebraMap, extensionEmbeddingOfIsReal_algebraMap, extensionEmbedding_algebraMap_star, instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplex_fLT, finrank_eq_one, instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedReal_fLT, instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplexOfIsLiftMk

Theorems

NameKindAssumesProvesValidatesDepends On
extensionEmbeddingOfIsReal_algebraMap 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLTNumberField.InfinitePlace.Completion.coe_extensionEmbeddingOfIsReal
extensionEmbedding_algebraMap
NumberField.InfinitePlace.UnramifiedExtension.instIsLiftMkEqComapAlgebraMapValAndIsUnramifiedOfFactIsReal
extensionEmbedding_algebraMap 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLTNumberField.InfinitePlace.UnramifiedExtension.comap_eq
AbsoluteValue.Completion.semialgHomOfComp_coe
NumberField.InfinitePlace.Extension.IsLift.isExtension
extensionEmbedding_algebraMap_star 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLTNumberField.InfinitePlace.UnramifiedExtension.comap_eq
AbsoluteValue.Completion.semialgHomOfComp_coe
NumberField.InfinitePlace.Extension.IsConjugateLift.isExtension
finrank_eq_one 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLTinstFactIsRealValAndEqComapAlgebraMapIsUnramified_fLT
NumberField.InfinitePlace.UnramifiedExtension.comap_eq
NumberField.InfinitePlace.Extension.isLift_or_isConjugateLift
instFactIsComplexValAndEqComapAlgebraMapIsUnramified_fLT
instFactIsComplexValAndEqComapAlgebraMapIsUnramified_fLT 📖NumberField.InfinitePlace.Extension.isComplex_of_isComplex
NumberField.InfinitePlace.UnramifiedExtension.comap_eq
instFactIsRealValAndEqComapAlgebraMapIsUnramified_fLT 📖NumberField.InfinitePlace.UnramifiedExtension.isReal_of_isReal
instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplexOfIsLiftMk 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLT
NumberField.InfinitePlace.Completion.instAlgebraComplex_fLT
NumberField.InfinitePlace.UnramifiedExtension.comap_eq
extensionEmbedding_algebraMap
instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedComplex_fLT 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLT
instAlgebraValAndEqComapAlgebraMapIsUnramifiedComplexOfIsConjugateLiftMk
NumberField.InfinitePlace.Completion.instAlgebraComplex_fLT
NumberField.InfinitePlace.UnramifiedExtension.comap_eq
extensionEmbedding_algebraMap_star
instIsScalarTowerValAndEqComapAlgebraMapIsUnramifiedReal_fLT 📖mathematicalinstAlgebraValAndEqComapAlgebraMapIsUnramified_fLT
NumberField.InfinitePlace.Completion.algebraReal
extensionEmbeddingOfIsReal_algebraMap

NumberField.InfinitePlace.Extension

Definitions

NameCategoryTheorems
algHomEquivIsExtension 📖CompOp
instAlgebraWithAbsRealValAbsoluteValueExistsRingHomComplexEqPlace 📖CompOp
1 mathmath: isExtension_algHom

Theorems

NameKindAssumesProvesValidatesDepends On
card_isUnramified_add_two_mul_card_isRamified 📖mathematicalNumberField.InfinitePlace.UnramifiedExtension
NumberField.InfinitePlace.RamifiedExtension
WithAbs.instFiniteDimensional_fLT
WithAbs.instIsSeparable_fLT
NumberField.InfinitePlace.RamifiedExtension.two_mul_card_eq
NumberField.InfinitePlace.UnramifiedExtension.card_eq
isExtension_algHom 📖mathematicalNumberField.ComplexEmbedding.IsExtension
instAlgebraWithAbsRealValAbsoluteValueExistsRingHomComplexEqPlace
sum_ramificationIdx_eq 📖mathematicalNumberField.InfinitePlace.Extension
NumberField.InfinitePlace.ramificationIdx
NumberField.InfinitePlace.ramificationIdx_eq_one
NumberField.InfinitePlace.ramificationIdx_eq_two
card_isUnramified_add_two_mul_card_isRamified

NumberField.InfinitePlace.IsUnramified

Theorems

NameKindAssumesProvesValidatesDepends On
not_isMixedExtension 📖mathematicalNumberField.ComplexEmbedding.IsMixedExtension
not_isMixedExtension_conjugate 📖mathematicalNumberField.ComplexEmbedding.IsMixedExtension

NumberField.InfinitePlace.RamifiedExtension

Definitions

NameCategoryTheorems
ofIsMixedExtension 📖CompOp
1 mathmath: ofIsMixedExtension_embedding
ofIsMixedExtension_conjugate 📖CompOp
sumEquivIsMixedExtension 📖CompOp
toIsMixedExtension 📖CompOp
2 mathmath: toIsMixedExtension_surjective, toIsMixedExtension_injective

Theorems

NameKindAssumesProvesValidatesDepends On
instIsConjugateLiftMkEqComapAlgebraMapValAndIsRamified 📖mathematicalNumberField.InfinitePlace.Extension.IsConjugateLiftisExtension_conjugate_embedding
instIsLiftMkEqComapAlgebraMapValAndIsRamified 📖mathematicalNumberField.InfinitePlace.Extension.IsLiftisExtension_embedding
isExtension_conjugate_embedding 📖mathematicalNumberField.ComplexEmbedding.IsExtensionNumberField.ComplexEmbedding.IsExtension.eq_1
isReal
comap_eq
NumberField.InfinitePlace.comap_embedding_eq_of_isReal
isReal_comap
isExtension_embedding 📖mathematicalNumberField.ComplexEmbedding.IsExtensionNumberField.ComplexEmbedding.IsExtension.eq_1
comap_eq
NumberField.InfinitePlace.comap_embedding_eq_of_isReal
isReal_comap
isMixedExtension 📖mathematicalNumberField.ComplexEmbedding.IsMixedExtensionisExtension_embedding
isReal
isComplex
isMixedExtension_conjugate 📖mathematicalNumberField.ComplexEmbedding.IsMixedExtensionisExtension_conjugate_embedding
isReal
isComplex
ofIsMixedExtension_embedding 📖mathematicalNumberField.ComplexEmbedding.IsMixedExtensionofIsMixedExtension
toIsMixedExtension_injective 📖mathematicalNumberField.InfinitePlace.RamifiedExtension
NumberField.ComplexEmbedding.IsMixedExtension
toIsMixedExtension
toIsMixedExtension_surjective 📖mathematicalNumberField.InfinitePlace.RamifiedExtension
NumberField.ComplexEmbedding.IsMixedExtension
toIsMixedExtension
ofIsMixedExtension_embedding
two_mul_card_eq 📖mathematicalNumberField.InfinitePlace.RamifiedExtension
NumberField.ComplexEmbedding.IsMixedExtension
NumberField.ComplexEmbedding.IsExtension

NumberField.InfinitePlace.UnramifiedExtension

Definitions

NameCategoryTheorems
equivIsUnmixedExtension 📖CompOp
instCoeExtension_1 📖CompOp
ofIsUnmixedExtension 📖CompOp
3 mathmath: ofIsUnmixedExtension_embedding_isExtension, ofIsUnmixedExtension_embedding, toIsUnmixedExtension_ofIsUnmixedExtension
toIsUnmixedExtension 📖CompOp
3 mathmath: toIsUnmixedExtension_injective, toIsUnmixedExtension_ofIsUnmixedExtension, toIsUnmixedExtension_surjective

Theorems

NameKindAssumesProvesValidatesDepends On
card_eq 📖mathematicalNumberField.InfinitePlace.UnramifiedExtension
NumberField.ComplexEmbedding.IsUnmixedExtension
NumberField.ComplexEmbedding.IsExtension
NumberField.ComplexEmbedding.IsMixedExtension
instIsLiftMkEqComapAlgebraMapValAndIsUnramifiedOfFactIsReal 📖mathematicalNumberField.InfinitePlace.Extension.IsLift
comap_eq
comap_eq
NumberField.InfinitePlace.comap_embedding_eq_of_isReal
isComplex_base 📖isReal_of_isReal
isReal_of_isReal 📖isUnramified
comap_eq
isUnmixedExtension 📖mathematicalNumberField.ComplexEmbedding.IsExtensionNumberField.ComplexEmbedding.IsUnmixedExtensionNumberField.InfinitePlace.IsUnramified.not_isMixedExtension
isUnramified
comap_eq
isUnmixedExtension_conjugate 📖mathematicalNumberField.ComplexEmbedding.IsExtensionNumberField.ComplexEmbedding.IsUnmixedExtensionNumberField.InfinitePlace.Extension.isExtension_conjugate_of_not_isExtension
comap_eq
NumberField.InfinitePlace.IsUnramified.not_isMixedExtension_conjugate
isUnramified
not_isExtension_iff_isExtension_conj 📖mathematicalNumberField.ComplexEmbedding.IsExtensionNumberField.InfinitePlace.Extension.isExtension_conjugate_of_not_isExtension
comap_eq
isComplex_base
ofIsUnmixedExtension_embedding 📖mathematicalNumberField.ComplexEmbedding.IsUnmixedExtensionofIsUnmixedExtension
ofIsUnmixedExtension_embedding_isExtension 📖mathematicalNumberField.ComplexEmbedding.IsUnmixedExtensionNumberField.ComplexEmbedding.IsExtension
ofIsUnmixedExtension
NumberField.ComplexEmbedding.IsUnmixedExtension.isReal_of_isReal
not_isExtension_iff_isExtension_conj
NumberField.ComplexEmbedding.not_isReal_of_not_isReal
toIsUnmixedExtension_injective 📖mathematicalNumberField.InfinitePlace.UnramifiedExtension
NumberField.ComplexEmbedding.IsUnmixedExtension
toIsUnmixedExtension
isUnmixedExtension
isUnmixedExtension_conjugate
NumberField.ComplexEmbedding.IsExtension.ne
toIsUnmixedExtension_ofIsUnmixedExtension 📖mathematicalNumberField.ComplexEmbedding.IsUnmixedExtensiontoIsUnmixedExtension
ofIsUnmixedExtension
ofIsUnmixedExtension_embedding_isExtension
isUnmixedExtension
isUnmixedExtension_conjugate
ofIsUnmixedExtension_embedding
toIsUnmixedExtension_surjective 📖mathematicalNumberField.InfinitePlace.UnramifiedExtension
NumberField.ComplexEmbedding.IsUnmixedExtension
toIsUnmixedExtension
toIsUnmixedExtension_ofIsUnmixedExtension

---

← Back to Index