Documentation Verification Report

Extension

📁 Source: FLT/NumberField/InfinitePlace/Extension.lean

Statistics

MetricCount
DefinitionsExtension, IsExtension, IsMixedExtension, IsUnmixedExtension, isExtensionEquivSum, Extension, IsConjugateLift, IsLift, toRamifiedExtension, toUnramifiedExtension, RamifiedExtension, instCoeExtension, UnramifiedExtension, instCoeExtension
14
Theoremsne, not_isExtension_conjugate, isExtension, isReal, not_isReal, isReal_of_isReal, not_isReal_of_not_isReal, isExtension, isExtension', isExtension, isExtension', isComplex_of_isComplex, isExtension_conjugate_of_not_isExtension, isExtension_or_isExtension_conjugate, isLift_or_isConjugateLift, isReal_base, mk_embedding, comap_eq, isComplex, isRamified, isReal, isReal_comap, comap_eq, isUnramified
24
Total38

IsDedekindDomain.HeightOneSpectrum

Definitions

NameCategoryTheorems
Extension 📖CompOp
19 mathmath: Extension.finite, finrank_tensorProduct_adicCompletion_eq_finrank_pi_adicCompletion, adicCompletionComapIntegerLinearEquiv_bijOn, tensorAdicCompletionComapAlgHom_bijective, tensorAdicCompletionComapLinearMap_isOpenQuotientMap, comap_pi_algebra_finite, adicCompletionComapAlgEquiv_integral, prodAdicCompletionsIntegers_eq_closureIntegers, prodAdicCompletionComap_isModuleTopology, adicCompletionComapIntegerLinearEquiv_tmul_apply, IsDedekindDomain.FiniteAdeleRing.restrictedProduct_prod_equiv_apply, Ideal.sum_ramification_inertia_extensions, instMulActionHomClassAlgHomTensorProductAdicCompletionForallValEqComap, IsDedekindDomain.FiniteAdeleRing.restrictedProduct_pi_isModuleTopology, IsDedekindDomain.FiniteAdeleRing.restrictedProduct_tensorProduct_equiv_restrictedProduct_prod_apply, instOneHomClassAlgHomTensorProductAdicCompletionForallValEqComap, adicCompletionComapAlgHom_map_closure_is_closed, tensorAdicCompletionComapLinearMap_surjective, tensorAdicCompletionComapAlgHom_tmul_apply

NumberField.ComplexEmbedding

Definitions

NameCategoryTheorems
IsExtension 📖MathDef
13 mathmath: NumberField.InfinitePlace.UnramifiedExtension.ofIsUnmixedExtension_embedding_isExtension, NumberField.InfinitePlace.Extension.IsConjugateLift.isExtension, NumberField.InfinitePlace.Extension.IsLift.isExtension, IsMixedExtension.isExtension, NumberField.InfinitePlace.UnramifiedExtension.not_isExtension_iff_isExtension_conj, NumberField.InfinitePlace.RamifiedExtension.isExtension_conjugate_embedding, NumberField.InfinitePlace.Extension.isExtension_or_isExtension_conjugate, NumberField.InfinitePlace.Extension.IsLift.isExtension', NumberField.InfinitePlace.Extension.isExtension_algHom, NumberField.InfinitePlace.RamifiedExtension.two_mul_card_eq, NumberField.InfinitePlace.RamifiedExtension.isExtension_embedding, NumberField.InfinitePlace.Extension.IsConjugateLift.isExtension', NumberField.InfinitePlace.UnramifiedExtension.card_eq
IsMixedExtension 📖MathDef
8 mathmath: NumberField.InfinitePlace.RamifiedExtension.isMixedExtension_conjugate, NumberField.InfinitePlace.IsUnramified.not_isMixedExtension, NumberField.InfinitePlace.IsUnramified.not_isMixedExtension_conjugate, NumberField.InfinitePlace.RamifiedExtension.toIsMixedExtension_surjective, NumberField.InfinitePlace.RamifiedExtension.toIsMixedExtension_injective, NumberField.InfinitePlace.RamifiedExtension.two_mul_card_eq, NumberField.InfinitePlace.RamifiedExtension.isMixedExtension, NumberField.InfinitePlace.UnramifiedExtension.card_eq
IsUnmixedExtension 📖MathDef
5 mathmath: NumberField.InfinitePlace.UnramifiedExtension.toIsUnmixedExtension_injective, NumberField.InfinitePlace.UnramifiedExtension.toIsUnmixedExtension_surjective, NumberField.InfinitePlace.UnramifiedExtension.isUnmixedExtension_conjugate, NumberField.InfinitePlace.UnramifiedExtension.isUnmixedExtension, NumberField.InfinitePlace.UnramifiedExtension.card_eq
isExtensionEquivSum 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
not_isReal_of_not_isReal 📖IsExtension

NumberField.ComplexEmbedding.IsExtension

Theorems

NameKindAssumesProvesValidatesDepends On
ne 📖NumberField.ComplexEmbedding.IsExtension
not_isExtension_conjugate 📖NumberField.ComplexEmbedding.IsExtension

NumberField.ComplexEmbedding.IsMixedExtension

Theorems

NameKindAssumesProvesValidatesDepends On
isExtension 📖mathematicalNumberField.ComplexEmbedding.IsMixedExtensionNumberField.ComplexEmbedding.IsExtension
isReal 📖NumberField.ComplexEmbedding.IsMixedExtension
not_isReal 📖NumberField.ComplexEmbedding.IsMixedExtension

NumberField.ComplexEmbedding.IsUnmixedExtension

Theorems

NameKindAssumesProvesValidatesDepends On
isReal_of_isReal 📖NumberField.ComplexEmbedding.IsUnmixedExtension

NumberField.InfinitePlace

Definitions

NameCategoryTheorems
Extension 📖CompOp
8 mathmath: Completion.piEquiv_smul, Completion.baseChangeEquiv_tmul, Completion.finrank_prod_eq_finrank, Completion.piExtension_apply, Completion.baseChange_surjective, Completion.baseChange_injective, Completion.finrank_pi_eq_finrank_tensorProduct, Extension.sum_ramificationIdx_eq
RamifiedExtension 📖CompOp
4 mathmath: Extension.card_isUnramified_add_two_mul_card_isRamified, RamifiedExtension.toIsMixedExtension_surjective, RamifiedExtension.toIsMixedExtension_injective, RamifiedExtension.two_mul_card_eq
UnramifiedExtension 📖CompOp
4 mathmath: Extension.card_isUnramified_add_two_mul_card_isRamified, UnramifiedExtension.toIsUnmixedExtension_injective, UnramifiedExtension.toIsUnmixedExtension_surjective, UnramifiedExtension.card_eq

NumberField.InfinitePlace.Extension

Definitions

NameCategoryTheorems
IsConjugateLift 📖CompData
2 mathmath: isLift_or_isConjugateLift, NumberField.InfinitePlace.RamifiedExtension.instIsConjugateLiftMkEqComapAlgebraMapValAndIsRamified
IsLift 📖CompData
3 mathmath: NumberField.InfinitePlace.RamifiedExtension.instIsLiftMkEqComapAlgebraMapValAndIsRamified, NumberField.InfinitePlace.UnramifiedExtension.instIsLiftMkEqComapAlgebraMapValAndIsUnramifiedOfFactIsReal, isLift_or_isConjugateLift
toRamifiedExtension 📖CompOp
toUnramifiedExtension 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
isComplex_of_isComplex 📖
isExtension_conjugate_of_not_isExtension 📖NumberField.ComplexEmbedding.IsExtensionisExtension_or_isExtension_conjugate
isExtension_or_isExtension_conjugate 📖mathematicalNumberField.ComplexEmbedding.IsExtensionmk_embedding
isLift_or_isConjugateLift 📖mathematicalIsLift
IsConjugateLift
isExtension_or_isExtension_conjugate
isReal_base 📖isComplex_of_isComplex
mk_embedding 📖

NumberField.InfinitePlace.Extension.IsConjugateLift

Theorems

NameKindAssumesProvesValidatesDepends On
isExtension 📖mathematicalNumberField.ComplexEmbedding.IsExtensionisExtension'
isExtension' 📖mathematicalNumberField.ComplexEmbedding.IsExtension

NumberField.InfinitePlace.Extension.IsLift

Theorems

NameKindAssumesProvesValidatesDepends On
isExtension 📖mathematicalNumberField.ComplexEmbedding.IsExtensionisExtension'
isExtension' 📖mathematicalNumberField.ComplexEmbedding.IsExtension

NumberField.InfinitePlace.RamifiedExtension

Definitions

NameCategoryTheorems
instCoeExtension 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq 📖
isComplex 📖isRamified
isRamified 📖
isReal 📖isReal_comap
comap_eq
isReal_comap 📖isRamified

NumberField.InfinitePlace.UnramifiedExtension

Definitions

NameCategoryTheorems
instCoeExtension 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
comap_eq 📖
isUnramified 📖

---

← Back to Index