Algebra
π Source: FLT/Patching/Algebra.lean
Statistics
Algebra
Definitions
| Name | Category | Theorems |
|---|---|---|
UniformlyBoundedRank π | CompData | β |
Algebra.UniformlyBoundedRank
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
cond π | β | β | β | β | β |
PatchingAlgebra
Definitions
| Name | Category | Theorems |
|---|---|---|
Component π | CompOp | 14 mathmath:instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero, ofPi_surjective, ofPi_apply, componentEquiv, instSubsingletonComponentOfNatNat, instIsLocalHomComponentRingHomComponentMapOfNeZeroNat, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype, map_apply, isClosed_subring, instFiniteComponent, componentMapRingHom_surjective, instT2SpaceComponent, instIsLocalRingComponentOfNeZeroNat, instNontrivialComponentOfNeZeroNat |
componentMap π | CompOp | |
componentMapRingHom π | CompOp | |
constEquiv π | CompOp | |
incl π | CompOp | β |
lift π | CompOp | |
map π | CompOp | 8 mathmath:map_id, mapEquiv_apply, map_apply, smul_lemmaβ, map_comp, map_comp_apply, map_surjective, mapEquiv_symm_apply |
mapEquiv π | CompOp | |
ofPi π | CompOp | |
subalgebra π | CompOp | β |
subring π | CompOp |
Theorems
RingHom
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
continuous_of_finite_of_compact π | β | β | β | β | IsLocalRing.isCompact_of_isNoetherianRing |
(root)
Definitions
Theorems
---