Documentation Verification Report

Algebra

πŸ“ Source: FLT/Patching/Algebra.lean

Statistics

MetricCount
DefinitionsUniformlyBoundedRank, PatchingAlgebra, Component, componentMap, componentMapRingHom, constEquiv, incl, lift, map, mapEquiv, ofPi, subalgebra, subring, instAlgebraPatchingAlgebra, instCommRingPatchingAlgebra, instTopologicalSpacePatchingAlgebra
16
Theoremscond, algebraMap_continuous, algebraMap_surjective, componentEquiv, componentMapRingHom_surjective, continuous_lift, isClosed_subring, lift_surjective, mapEquiv_apply, mapEquiv_symm_apply, map_apply, map_comp, map_comp_apply, map_id, map_surjective, ofPi_apply, ofPi_surjective, continuous_of_finite_of_compact, instCompactSpacePatchingAlgebra, instFiniteComponent, instIsLocalHomComponentRingHomComponentMapOfNeZeroNat, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype, instIsLocalRingComponentOfNeZeroNat, instIsLocalRingPatchingAlgebra, instIsTopologicalRingPatchingAlgebra, instNontrivialComponentOfNeZeroNat, instNontrivialForallComponent, instNontrivialPatchingAlgebra, instSubsingletonComponentOfNatNat, instT2SpaceComponent, instT2SpacePatchingAlgebra, instTotallyDisconnectedSpacePatchingAlgebra
33
Total49

Algebra

Definitions

NameCategoryTheorems
UniformlyBoundedRank πŸ“–CompDataβ€”

Algebra.UniformlyBoundedRank

Theorems

NameKindAssumesProvesValidatesDepends On
cond πŸ“–β€”β€”β€”β€”β€”

PatchingAlgebra

Definitions

NameCategoryTheorems
Component πŸ“–CompOp
14 mathmath: instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero, ofPi_surjective, ofPi_apply, componentEquiv, instSubsingletonComponentOfNatNat, instIsLocalHomComponentRingHomComponentMapOfNeZeroNat, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype, map_apply, isClosed_subring, instFiniteComponent, componentMapRingHom_surjective, instT2SpaceComponent, instIsLocalRingComponentOfNeZeroNat, instNontrivialComponentOfNeZeroNat
componentMap πŸ“–CompOp
1 mathmath: instIsLocalHomComponentRingHomComponentMapOfNeZeroNat
componentMapRingHom πŸ“–CompOp
2 mathmath: map_apply, componentMapRingHom_surjective
constEquiv πŸ“–CompOp
1 mathmath: smul_lemma₁
incl πŸ“–CompOpβ€”
lift πŸ“–CompOp
2 mathmath: lift_surjective, continuous_lift
map πŸ“–CompOp
8 mathmath: map_id, mapEquiv_apply, map_apply, smul_lemmaβ‚€, map_comp, map_comp_apply, map_surjective, mapEquiv_symm_apply
mapEquiv πŸ“–CompOp
2 mathmath: mapEquiv_apply, mapEquiv_symm_apply
ofPi πŸ“–CompOp
2 mathmath: ofPi_surjective, ofPi_apply
subalgebra πŸ“–CompOpβ€”
subring πŸ“–CompOp
4 mathmath: instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype, map_apply, isClosed_subring

Theorems

NameKindAssumesProvesValidatesDepends On
algebraMap_continuous πŸ“–mathematicalβ€”PatchingAlgebra
instTopologicalSpacePatchingAlgebra
instCommRingPatchingAlgebra
instAlgebraPatchingAlgebra
β€”instFiniteComponent
RingHom.continuous_of_finite_of_compact
IsLocalRing.instT2SpaceOfIsNoetherianRing_fLT
instIsTopologicalRingUltraProduct
algebraMap_surjective πŸ“–mathematicalβ€”PatchingAlgebra
instCommRingPatchingAlgebra
instAlgebraPatchingAlgebra
β€”denseRange_inverseLimit
instDiscreteTopologyUltraProduct
IsLocalRing.instT2SpaceOfIsNoetherianRing_fLT
instIsScalarTowerForallUltraProduct
UltraProduct.surjective_of_eventually_surjective
instT2SpacePatchingAlgebra
algebraMap_continuous
componentEquiv πŸ“–mathematicalIsLocalRing.IsAdicTopologyComponent
instCommRingUltraProduct
instAlgebraUltraProduct
β€”Algebra.UniformlyBoundedRank.cond
UltraProduct.exists_algEquiv_of_bddAbove_card
IsLocalRing.instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT
IsLocalRing.isOpen_maximalIdeal_pow''
IsLocalRing.instNonarchimedeanRing_fLT
componentMapRingHom_surjective πŸ“–mathematicalβ€”Component
instCommRingUltraProduct
componentMapRingHom
β€”UltraProduct.mapRingHom_surjective
continuous_lift πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra
instTopologicalSpacePatchingAlgebra
instCommRingPatchingAlgebra
lift
β€”Algebra.UniformlyBoundedRank.cond
UltraProduct.continuous_of_bddAbove_card
IsLocalRing.instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT
IsLocalRing.isOpen_maximalIdeal_pow''
IsLocalRing.instNonarchimedeanRing_fLT
isClosed_subring πŸ“–mathematicalβ€”Component
instTopologicalSpaceUltraProduct
instCommRingUltraProduct
subring
β€”instT2SpaceComponent
lift_surjective πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra
instCommRingPatchingAlgebra
lift
β€”denseRange_inverseLimit
instDiscreteTopologyUltraProduct
Algebra.UniformlyBoundedRank.cond
UltraProduct.surjective_of_bddAbove_card
IsLocalRing.instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT
IsLocalRing.isOpen_maximalIdeal_pow''
IsLocalRing.instNonarchimedeanRing_fLT
instT2SpacePatchingAlgebra
continuous_lift
mapEquiv_apply πŸ“–mathematicalβ€”PatchingAlgebra
instCommRingPatchingAlgebra
mapEquiv
map
β€”β€”
mapEquiv_symm_apply πŸ“–mathematicalβ€”PatchingAlgebra
instCommRingPatchingAlgebra
mapEquiv
map
β€”β€”
map_apply πŸ“–mathematicalβ€”Component
instCommRingUltraProduct
subring
PatchingAlgebra
instCommRingPatchingAlgebra
map
componentMapRingHom
β€”β€”
map_comp πŸ“–mathematicalβ€”map
PatchingAlgebra
instCommRingPatchingAlgebra
β€”map_comp_apply
map_comp_apply πŸ“–mathematicalβ€”PatchingAlgebra
instCommRingPatchingAlgebra
map
β€”ofPi_surjective
map_id πŸ“–mathematicalβ€”map
PatchingAlgebra
instCommRingPatchingAlgebra
β€”ofPi_surjective
map_surjective πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra
instCommRingPatchingAlgebra
map
β€”UltraProduct.Ο€_surjective
componentMapRingHom_surjective
nonempty_inverseLimit_of_finite
instFiniteComponent
ofPi_apply πŸ“–mathematicalβ€”Component
instCommRingUltraProduct
ofPi
UltraProduct
UltraProduct.Ο€
β€”β€”
ofPi_surjective πŸ“–mathematicalβ€”Component
instCommRingUltraProduct
ofPi
β€”β€”

RingHom

Theorems

NameKindAssumesProvesValidatesDepends On
continuous_of_finite_of_compact πŸ“–β€”β€”β€”β€”IsLocalRing.isCompact_of_isNoetherianRing

(root)

Definitions

NameCategoryTheorems
PatchingAlgebra πŸ“–CompOp
24 mathmath: instIsScalarTowerPatchingAlgebraPatchingModule, smul_lemma, PatchingAlgebra.map_id, PatchingAlgebra.algebraMap_continuous, instFinitePatchingAlgebraPatchingModule, PatchingAlgebra.faithfulSMul, PatchingAlgebra.algebraMap_surjective, instIsTopologicalRingPatchingAlgebra, PatchingAlgebra.surjective_quotientToOver, smul_lemma₁, instT2SpacePatchingAlgebra, instCompactSpacePatchingAlgebra, PatchingAlgebra.mapEquiv_apply, PatchingAlgebra.map_apply, smul_lemmaβ‚€, PatchingAlgebra.map_comp, PatchingAlgebra.lift_surjective, instIsLocalRingPatchingAlgebra, PatchingAlgebra.map_comp_apply, instNontrivialPatchingAlgebra, PatchingAlgebra.map_surjective, PatchingAlgebra.mapEquiv_symm_apply, PatchingAlgebra.continuous_lift, instTotallyDisconnectedSpacePatchingAlgebra
instAlgebraPatchingAlgebra πŸ“–CompOp
6 mathmath: instIsScalarTowerPatchingAlgebraPatchingModule, smul_lemma, PatchingAlgebra.algebraMap_continuous, PatchingAlgebra.algebraMap_surjective, PatchingAlgebra.surjective_quotientToOver, smul_lemma₁
instCommRingPatchingAlgebra πŸ“–CompOp
19 mathmath: instIsScalarTowerPatchingAlgebraPatchingModule, smul_lemma, PatchingAlgebra.map_id, PatchingAlgebra.algebraMap_continuous, instFinitePatchingAlgebraPatchingModule, PatchingAlgebra.algebraMap_surjective, instIsTopologicalRingPatchingAlgebra, PatchingAlgebra.surjective_quotientToOver, smul_lemma₁, PatchingAlgebra.mapEquiv_apply, PatchingAlgebra.map_apply, smul_lemmaβ‚€, PatchingAlgebra.map_comp, PatchingAlgebra.lift_surjective, instIsLocalRingPatchingAlgebra, PatchingAlgebra.map_comp_apply, PatchingAlgebra.map_surjective, PatchingAlgebra.mapEquiv_symm_apply, PatchingAlgebra.continuous_lift
instTopologicalSpacePatchingAlgebra πŸ“–CompOp
6 mathmath: PatchingAlgebra.algebraMap_continuous, instIsTopologicalRingPatchingAlgebra, instT2SpacePatchingAlgebra, instCompactSpacePatchingAlgebra, PatchingAlgebra.continuous_lift, instTotallyDisconnectedSpacePatchingAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
instCompactSpacePatchingAlgebra πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra
instTopologicalSpacePatchingAlgebra
β€”instFiniteComponent
PatchingAlgebra.isClosed_subring
instFiniteComponent πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra.Componentβ€”PatchingAlgebra.componentEquiv
IsLocalRing.instNonarchimedeanRing_fLT
instTopologicallyFGOfFiniteType
IsLocalRing.isOpen_maximalIdeal_pow''
instIsLocalHomComponentRingHomComponentMapOfNeZeroNat πŸ“–mathematicalβ€”PatchingAlgebra.Component
instCommRingUltraProduct
PatchingAlgebra.componentMap
β€”instIsLocalHomUltraProductRingHomMapRingHom
instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero πŸ“–mathematicalβ€”PatchingAlgebra.Component
instCommRingUltraProduct
PatchingAlgebra.subring
β€”instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype
IsUnit.pi_iff
instIsLocalHomComponentRingHomComponentMapOfNeZeroNat
instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype πŸ“–mathematicalβ€”PatchingAlgebra.Component
instCommRingUltraProduct
PatchingAlgebra.subring
β€”IsUnit.pi_iff
instIsLocalRingComponentOfNeZeroNat πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra.Component
instCommRingUltraProduct
β€”PatchingAlgebra.componentEquiv
IsLocalRing.instNonarchimedeanRing_fLT
instTopologicallyFGOfFiniteType
instNontrivialComponentOfNeZeroNat
instIsLocalRingPatchingAlgebra πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra
instCommRingPatchingAlgebra
β€”instNontrivialPatchingAlgebra
instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype
IsUnit.pi_iff
instIsLocalRingComponentOfNeZeroNat
instIsTopologicalRingPatchingAlgebra πŸ“–mathematicalβ€”PatchingAlgebra
instTopologicalSpacePatchingAlgebra
instCommRingPatchingAlgebra
β€”instIsTopologicalRingUltraProduct
instNontrivialComponentOfNeZeroNat πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra.Componentβ€”PatchingAlgebra.componentEquiv
IsLocalRing.instNonarchimedeanRing_fLT
instTopologicallyFGOfFiniteType
instNontrivialForallComponent πŸ“–β€”IsLocalRing.IsAdicTopologyβ€”β€”instNontrivialComponentOfNeZeroNat
instNontrivialPatchingAlgebra πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebraβ€”instNontrivialForallComponent
instSubsingletonComponentOfNatNat πŸ“–mathematicalIsLocalRing.IsAdicTopologyPatchingAlgebra.Componentβ€”PatchingAlgebra.componentEquiv
IsLocalRing.instNonarchimedeanRing_fLT
instTopologicallyFGOfFiniteType
instT2SpaceComponent πŸ“–mathematicalβ€”PatchingAlgebra.Component
instTopologicalSpaceUltraProduct
β€”instDiscreteTopologyUltraProduct
instT2SpacePatchingAlgebra πŸ“–mathematicalβ€”PatchingAlgebra
instTopologicalSpacePatchingAlgebra
β€”instT2SpaceComponent
instTotallyDisconnectedSpacePatchingAlgebra πŸ“–mathematicalβ€”PatchingAlgebra
instTopologicalSpacePatchingAlgebra
β€”instTotallyDisconnectedSpaceOfDiscreteTopology_fLT
instDiscreteTopologyUltraProduct

---

← Back to Index