| Name | Category | Theorems |
UltraProduct 📖 | CompOp | 30 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, instIsLocalHomUltraProductRingHomMapRingHom, UltraProduct.π_eq_zero_iff, UltraProduct.surjective_of_bddAbove_card, UltraProduct.πₗ_surjective, UltraProduct.instIsScalarTower, instIsTopologicalAddGroupUltraProduct, UltraProduct.πₗ_eq_iff, PatchingAlgebra.ofPi_apply, instIsScalarTowerForallUltraProduct_1, UltraProduct.surjective_of_eventually_surjective, instDiscreteTopologyUltraProduct, PatchingModule.ofPi_apply, UltraProduct.map_surjective, UltraProduct.mapRingHom_π, UltraProduct.π_smul, UltraProduct.bijective_of_eventually_bijective, instIsTopologicalRingUltraProduct, PatchingModule.incl_apply, UltraProduct.mapRingHom_surjective, instIsScalarTowerUltraProduct, instIsScalarTowerForallUltraProduct, UltraProduct.π_surjective, UltraProduct.isUnit_π_iff, UltraProduct.π_eq_iff, UltraProduct.exists_algEquiv_of_bddAbove_card, UltraProduct.exists_ringEquiv_of_bddAbove_card, UltraProduct.πₗ_eq_zero, UltraProduct.map_πₗ, UltraProduct.continuous_of_bddAbove_card
|
eventuallyProd 📖 | CompOp | 9 mathmath: eventuallyProd_vanishingFilter_le, eventuallyProd_mono_right, vanishingFilter_gc, eventuallyProd_eq_sup, eventuallyProd.isPrime, vanishingFilter_eventuallyProd, eventuallyProd_mono_left, vanishingFilter_le, mem_eventuallyProd
|
instAddCommGroupUltraProduct 📖 | CompOp | 25 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, UltraProduct.πₗ_surjective, UltraProduct.instIsScalarTower, instIsTopologicalAddGroupUltraProduct, UltraProduct.πₗ_eq_iff, instIsScalarTowerForallUltraProduct_1, UltraProduct.surjective_of_eventually_surjective, PatchingModule.mapEquiv_apply, PatchingModule.ofPi_surjective, PatchingModule.componentMapModule_surjective, PatchingModule.ofPi_apply, UltraProduct.map_surjective, UltraProduct.π_smul, PatchingModule.smul_apply, UltraProduct.bijective_of_eventually_bijective, PatchingModule.incl_apply, PatchingModule.ker_componentMapModule_mkQ, instIsScalarTowerUltraProduct, instIsScalarTowerForallUltraProduct, instContinuousSMulComponentValIdealIsOpenCoe, PatchingModule.isClosed_submodule, PatchingModule.map_apply, UltraProduct.πₗ_eq_zero, UltraProduct.map_πₗ, PatchingModule.mem_smul_top
|
instAlgebraForallUltraProduct 📖 | CompOp | 1 mathmath: instIsScalarTowerForallUltraProduct_1
|
instAlgebraUltraProduct 📖 | CompOp | 3 mathmath: PatchingAlgebra.componentEquiv, instIsScalarTowerUltraProduct, UltraProduct.exists_algEquiv_of_bddAbove_card
|
instCommRingUltraProduct 📖 | CompOp | 25 mathmath: instIsLocalHomUltraProductRingHomMapRingHom, UltraProduct.π_eq_zero_iff, UltraProduct.surjective_of_bddAbove_card, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero, PatchingAlgebra.ofPi_surjective, PatchingAlgebra.ofPi_apply, PatchingAlgebra.componentEquiv, instIsScalarTowerForallUltraProduct_1, instIsLocalHomComponentRingHomComponentMapOfNeZeroNat, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype, UltraProduct.mapRingHom_π, UltraProduct.π_smul, instIsTopologicalRingUltraProduct, PatchingAlgebra.map_apply, PatchingAlgebra.isClosed_subring, UltraProduct.mapRingHom_surjective, instIsScalarTowerUltraProduct, PatchingAlgebra.componentMapRingHom_surjective, UltraProduct.π_surjective, UltraProduct.isUnit_π_iff, instIsLocalRingComponentOfNeZeroNat, UltraProduct.π_eq_iff, UltraProduct.exists_algEquiv_of_bddAbove_card, UltraProduct.exists_ringEquiv_of_bddAbove_card, UltraProduct.continuous_of_bddAbove_card
|
instModuleForallUltraProduct 📖 | CompOp | 21 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, UltraProduct.πₗ_surjective, UltraProduct.πₗ_eq_iff, instIsScalarTowerForallUltraProduct_1, UltraProduct.surjective_of_eventually_surjective, PatchingModule.mapEquiv_apply, PatchingModule.ofPi_surjective, PatchingModule.componentMapModule_surjective, PatchingModule.ofPi_apply, UltraProduct.map_surjective, UltraProduct.π_smul, PatchingModule.smul_apply, UltraProduct.bijective_of_eventually_bijective, PatchingModule.incl_apply, PatchingModule.ker_componentMapModule_mkQ, instIsScalarTowerForallUltraProduct, PatchingModule.isClosed_submodule, PatchingModule.map_apply, UltraProduct.πₗ_eq_zero, UltraProduct.map_πₗ, PatchingModule.mem_smul_top
|
instModuleUltraProduct 📖 | CompOp | 10 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, UltraProduct.instIsScalarTower, UltraProduct.surjective_of_eventually_surjective, PatchingModule.smul_apply, UltraProduct.bijective_of_eventually_bijective, PatchingModule.ker_componentMapModule_mkQ, instIsScalarTowerUltraProduct, instIsScalarTowerForallUltraProduct, instContinuousSMulComponentValIdealIsOpenCoe, PatchingModule.mem_smul_top
|
instModuleUltraProduct_1 📖 | CompOp | — |
instSMulUltraProduct 📖 | CompOp | 3 mathmath: instIsScalarTowerForallUltraProduct_1, UltraProduct.π_smul, instIsScalarTowerUltraProduct
|
instTopologicalSpaceUltraProduct 📖 | CompOp | 8 mathmath: instIsTopologicalAddGroupUltraProduct, instDiscreteTopologyUltraProduct, instIsTopologicalRingUltraProduct, PatchingAlgebra.isClosed_subring, instT2SpaceComponent, instContinuousSMulComponentValIdealIsOpenCoe, PatchingModule.isClosed_submodule, UltraProduct.continuous_of_bddAbove_card
|