Documentation Verification Report

Ultraproduct

📁 Source: FLT/Patching/Ultraproduct.lean

Statistics

MetricCount
DefinitionsUltraProduct, map, mapRingHom, π, πₗ, eventuallyProd, instAddCommGroupUltraProduct, instAlgebraForallUltraProduct, instAlgebraUltraProduct, instCommRingUltraProduct, instModuleForallUltraProduct, instModuleUltraProduct, instModuleUltraProduct_1, instSMulUltraProduct, instTopologicalSpaceUltraProduct
15
Theoremsbijective_of_eventually_bijective, continuous_of_bddAbove_card, exists_algEquiv_of_bddAbove_card, exists_bijective_of_bddAbove_card, exists_ringEquiv_of_bddAbove_card, instIsScalarTower, isUnit_π_iff, mapRingHom_surjective, mapRingHom_π, map_surjective, map_πₗ, surjective_of_bddAbove_card, surjective_of_eventually_surjective, π_eq_iff, π_eq_zero_iff, π_smul, π_surjective, πₗ_eq_iff, πₗ_eq_zero, πₗ_surjective, isPrime, eventuallyProd_eq_sup, eventuallyProd_mono_left, eventuallyProd_mono_right, instDiscreteTopologyUltraProduct, instIsLocalHomUltraProductRingHomMapRingHom, instIsScalarTowerForallUltraProduct, instIsScalarTowerForallUltraProduct_1, instIsScalarTowerUltraProduct, instIsTopologicalAddGroupUltraProduct, instIsTopologicalRingUltraProduct, mem_eventuallyProd
32
Total47

UltraProduct

Definitions

NameCategoryTheorems
map 📖CompOp
2 mathmath: map_surjective, map_πₗ
mapRingHom 📖CompOp
3 mathmath: instIsLocalHomUltraProductRingHomMapRingHom, mapRingHom_π, mapRingHom_surjective
π 📖CompOp
10 mathmath: π_eq_zero_iff, surjective_of_bddAbove_card, PatchingAlgebra.ofPi_apply, mapRingHom_π, π_smul, π_surjective, isUnit_π_iff, π_eq_iff, exists_ringEquiv_of_bddAbove_card, continuous_of_bddAbove_card
πₗ 📖CompOp
9 mathmath: exists_bijective_of_bddAbove_card, πₗ_surjective, πₗ_eq_iff, surjective_of_eventually_surjective, PatchingModule.ofPi_apply, bijective_of_eventually_bijective, PatchingModule.incl_apply, πₗ_eq_zero, map_πₗ

Theorems

NameKindAssumesProvesValidatesDepends On
bijective_of_eventually_bijective 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleUltraProduct
instModuleForallUltraProduct
instIsScalarTowerForallUltraProduct
πₗ
instIsScalarTowerForallUltraProduct
πₗ_surjective
πₗ_eq_iff
continuous_of_bddAbove_card 📖mathematicalUltraProduct
instTopologicalSpaceUltraProduct
instCommRingUltraProduct
π
exists_ringEquiv_of_bddAbove_card
instIsTopologicalRingUltraProduct
instDiscreteTopologyUltraProduct
exists_algEquiv_of_bddAbove_card 📖mathematicalUltraProduct
instCommRingUltraProduct
instAlgebraUltraProduct
TopologicalAlgebraTypeCardLT.isHomeomorph_equivOfAlgebra
instFiniteTopologicalAlgebraTypeCardLT
instIsScalarTowerForallUltraProduct
bijective_of_eventually_bijective
πₗ_eq_iff
exists_bijective_of_bddAbove_card 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleUltraProduct
instModuleForallUltraProduct
instIsScalarTowerForallUltraProduct
πₗ
instIsScalarTowerForallUltraProduct
instFiniteModuleTypeCardLT
bijective_of_eventually_bijective
exists_ringEquiv_of_bddAbove_card 📖mathematicalUltraProduct
instCommRingUltraProduct
π
exists_algEquiv_of_bddAbove_card
instIsScalarTower 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleUltraProduct
isUnit_π_iff 📖mathematicalUltraProduct
instCommRingUltraProduct
π
π_surjective
mapRingHom_surjective 📖mathematicalUltraProduct
instCommRingUltraProduct
mapRingHom
map_surjective
mapRingHom_π 📖mathematicalUltraProduct
instCommRingUltraProduct
mapRingHom
π
map_surjective 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
map
πₗ_surjective
map_πₗ 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
map
πₗ
surjective_of_bddAbove_card 📖mathematicalUltraProduct
instCommRingUltraProduct
π
exists_ringEquiv_of_bddAbove_card
surjective_of_eventually_surjective 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleUltraProduct
instModuleForallUltraProduct
instIsScalarTowerForallUltraProduct
πₗ
instIsScalarTowerForallUltraProduct
πₗ_surjective
πₗ_eq_iff
π_eq_iff 📖mathematicalUltraProduct
instCommRingUltraProduct
π
π_eq_zero_iff 📖mathematicalUltraProduct
instCommRingUltraProduct
π
π_eq_iff
π_smul 📖mathematicalUltraProduct
instSMulUltraProduct
instCommRingUltraProduct
π
instAddCommGroupUltraProduct
instModuleForallUltraProduct
π_surjective 📖mathematicalUltraProduct
instCommRingUltraProduct
π
πₗ_eq_iff 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
πₗ
πₗ_eq_zero 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
πₗ
πₗ_surjective 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
πₗ

(root)

Definitions

NameCategoryTheorems
UltraProduct 📖CompOp
30 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, instIsLocalHomUltraProductRingHomMapRingHom, UltraProduct.π_eq_zero_iff, UltraProduct.surjective_of_bddAbove_card, UltraProduct.πₗ_surjective, UltraProduct.instIsScalarTower, instIsTopologicalAddGroupUltraProduct, UltraProduct.πₗ_eq_iff, PatchingAlgebra.ofPi_apply, instIsScalarTowerForallUltraProduct_1, UltraProduct.surjective_of_eventually_surjective, instDiscreteTopologyUltraProduct, PatchingModule.ofPi_apply, UltraProduct.map_surjective, UltraProduct.mapRingHom_π, UltraProduct.π_smul, UltraProduct.bijective_of_eventually_bijective, instIsTopologicalRingUltraProduct, PatchingModule.incl_apply, UltraProduct.mapRingHom_surjective, instIsScalarTowerUltraProduct, instIsScalarTowerForallUltraProduct, UltraProduct.π_surjective, UltraProduct.isUnit_π_iff, UltraProduct.π_eq_iff, UltraProduct.exists_algEquiv_of_bddAbove_card, UltraProduct.exists_ringEquiv_of_bddAbove_card, UltraProduct.πₗ_eq_zero, UltraProduct.map_πₗ, UltraProduct.continuous_of_bddAbove_card
eventuallyProd 📖CompOp
9 mathmath: eventuallyProd_vanishingFilter_le, eventuallyProd_mono_right, vanishingFilter_gc, eventuallyProd_eq_sup, eventuallyProd.isPrime, vanishingFilter_eventuallyProd, eventuallyProd_mono_left, vanishingFilter_le, mem_eventuallyProd
instAddCommGroupUltraProduct 📖CompOp
25 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, UltraProduct.πₗ_surjective, UltraProduct.instIsScalarTower, instIsTopologicalAddGroupUltraProduct, UltraProduct.πₗ_eq_iff, instIsScalarTowerForallUltraProduct_1, UltraProduct.surjective_of_eventually_surjective, PatchingModule.mapEquiv_apply, PatchingModule.ofPi_surjective, PatchingModule.componentMapModule_surjective, PatchingModule.ofPi_apply, UltraProduct.map_surjective, UltraProduct.π_smul, PatchingModule.smul_apply, UltraProduct.bijective_of_eventually_bijective, PatchingModule.incl_apply, PatchingModule.ker_componentMapModule_mkQ, instIsScalarTowerUltraProduct, instIsScalarTowerForallUltraProduct, instContinuousSMulComponentValIdealIsOpenCoe, PatchingModule.isClosed_submodule, PatchingModule.map_apply, UltraProduct.πₗ_eq_zero, UltraProduct.map_πₗ, PatchingModule.mem_smul_top
instAlgebraForallUltraProduct 📖CompOp
1 mathmath: instIsScalarTowerForallUltraProduct_1
instAlgebraUltraProduct 📖CompOp
3 mathmath: PatchingAlgebra.componentEquiv, instIsScalarTowerUltraProduct, UltraProduct.exists_algEquiv_of_bddAbove_card
instCommRingUltraProduct 📖CompOp
25 mathmath: instIsLocalHomUltraProductRingHomMapRingHom, UltraProduct.π_eq_zero_iff, UltraProduct.surjective_of_bddAbove_card, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomCompEvalRingHomNatSubtypeOfNeZero, PatchingAlgebra.ofPi_surjective, PatchingAlgebra.ofPi_apply, PatchingAlgebra.componentEquiv, instIsScalarTowerForallUltraProduct_1, instIsLocalHomComponentRingHomComponentMapOfNeZeroNat, instIsLocalHomSubtypeForallComponentMemSubringSubringRingHomSubtype, UltraProduct.mapRingHom_π, UltraProduct.π_smul, instIsTopologicalRingUltraProduct, PatchingAlgebra.map_apply, PatchingAlgebra.isClosed_subring, UltraProduct.mapRingHom_surjective, instIsScalarTowerUltraProduct, PatchingAlgebra.componentMapRingHom_surjective, UltraProduct.π_surjective, UltraProduct.isUnit_π_iff, instIsLocalRingComponentOfNeZeroNat, UltraProduct.π_eq_iff, UltraProduct.exists_algEquiv_of_bddAbove_card, UltraProduct.exists_ringEquiv_of_bddAbove_card, UltraProduct.continuous_of_bddAbove_card
instModuleForallUltraProduct 📖CompOp
21 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, UltraProduct.πₗ_surjective, UltraProduct.πₗ_eq_iff, instIsScalarTowerForallUltraProduct_1, UltraProduct.surjective_of_eventually_surjective, PatchingModule.mapEquiv_apply, PatchingModule.ofPi_surjective, PatchingModule.componentMapModule_surjective, PatchingModule.ofPi_apply, UltraProduct.map_surjective, UltraProduct.π_smul, PatchingModule.smul_apply, UltraProduct.bijective_of_eventually_bijective, PatchingModule.incl_apply, PatchingModule.ker_componentMapModule_mkQ, instIsScalarTowerForallUltraProduct, PatchingModule.isClosed_submodule, PatchingModule.map_apply, UltraProduct.πₗ_eq_zero, UltraProduct.map_πₗ, PatchingModule.mem_smul_top
instModuleUltraProduct 📖CompOp
10 mathmath: UltraProduct.exists_bijective_of_bddAbove_card, UltraProduct.instIsScalarTower, UltraProduct.surjective_of_eventually_surjective, PatchingModule.smul_apply, UltraProduct.bijective_of_eventually_bijective, PatchingModule.ker_componentMapModule_mkQ, instIsScalarTowerUltraProduct, instIsScalarTowerForallUltraProduct, instContinuousSMulComponentValIdealIsOpenCoe, PatchingModule.mem_smul_top
instModuleUltraProduct_1 📖CompOp
instSMulUltraProduct 📖CompOp
3 mathmath: instIsScalarTowerForallUltraProduct_1, UltraProduct.π_smul, instIsScalarTowerUltraProduct
instTopologicalSpaceUltraProduct 📖CompOp
8 mathmath: instIsTopologicalAddGroupUltraProduct, instDiscreteTopologyUltraProduct, instIsTopologicalRingUltraProduct, PatchingAlgebra.isClosed_subring, instT2SpaceComponent, instContinuousSMulComponentValIdealIsOpenCoe, PatchingModule.isClosed_submodule, UltraProduct.continuous_of_bddAbove_card

Theorems

NameKindAssumesProvesValidatesDepends On
eventuallyProd_eq_sup 📖mathematicaleventuallyProd
Submodule.pi'
eventuallyProd_mono_left 📖mathematicaleventuallyProd
eventuallyProd_mono_right 📖mathematicaleventuallyProd
instDiscreteTopologyUltraProduct 📖mathematicalUltraProduct
instTopologicalSpaceUltraProduct
instIsLocalHomUltraProductRingHomMapRingHom 📖mathematicalUltraProduct
instCommRingUltraProduct
UltraProduct.mapRingHom
UltraProduct.π_surjective
instIsScalarTowerForallUltraProduct 📖mathematicalUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
instModuleUltraProduct
UltraProduct.πₗ_surjective
instIsScalarTowerForallUltraProduct_1 📖mathematicalUltraProduct
instCommRingUltraProduct
instAlgebraForallUltraProduct
instSMulUltraProduct
instAddCommGroupUltraProduct
instModuleForallUltraProduct
UltraProduct.π_surjective
UltraProduct.π_smul
instIsScalarTowerUltraProduct 📖mathematicalUltraProduct
instCommRingUltraProduct
instAlgebraUltraProduct
instSMulUltraProduct
instAddCommGroupUltraProduct
instModuleUltraProduct
UltraProduct.π_surjective
UltraProduct.π_smul
instIsScalarTowerForallUltraProduct
instIsTopologicalAddGroupUltraProduct 📖mathematicalUltraProduct
instTopologicalSpaceUltraProduct
instAddCommGroupUltraProduct
instDiscreteTopologyUltraProduct
instIsTopologicalRingUltraProduct 📖mathematicalUltraProduct
instTopologicalSpaceUltraProduct
instCommRingUltraProduct
instDiscreteTopologyUltraProduct
mem_eventuallyProd 📖mathematicaleventuallyProd

eventuallyProd

Theorems

NameKindAssumesProvesValidatesDepends On
isPrime 📖mathematicaleventuallyProd

---

← Back to Index