Documentation Verification Report

AdicTopology

📁 Source: FLT/Patching/Utils/AdicTopology.lean

Statistics

MetricCount
DefinitionsIsAdicTopology, withIdeal
2
Theoremsof_isLocalHom, isCompact_of_fg, isAdic, compactSpace, isCompact_of_fg, compactSpace_of_finite_residueField, hasBasis_maximalIdeal_pow, instDiscreteTopologyOfIsArtinianRing_fLT, instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT, instIsAdicTopology, instIsAdicTopologyOfIsNoetherianRingOfCompactSpaceOfT2SpaceOfTotallyDisconnectedSpace, instIsHausdorffMaximalIdealOfIsNoetherianRing_fLT, instIsLinearTopology_fLT, instIsPrecompleteMaximalIdealOfCompactSpace_fLT, instNonarchimedeanRing_fLT, instT2SpaceOfIsNoetherianRing_fLT, isCompact_of_isNoetherianRing, isOpen_iff_finite_quotient', isOpen_maximalIdeal', isOpen_maximalIdeal_pow', isOpen_maximalIdeal_pow''
21
Total23

IsLocalRing

Definitions

NameCategoryTheorems
IsAdicTopology 📖CompData
3 mathmath: Deformation.ProartinianCat.instIsAdicTopologyCarrierSelf, instIsAdicTopologyOfIsNoetherianRingOfCompactSpaceOfT2SpaceOfTotallyDisconnectedSpace, instIsAdicTopology
withIdeal 📖CompOp
1 mathmath: instIsAdicTopology

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace_of_finite_residueField 📖instNonarchimedeanRing_fLT
hasBasis_maximalIdeal_pow
instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT
hasBasis_maximalIdeal_pow 📖IsAdicTopology.isAdic
instDiscreteTopologyOfIsArtinianRing_fLT 📖isOpen_maximalIdeal_pow''
instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT 📖isOpen_maximalIdeal_pow''
instIsAdicTopology 📖mathematicalIsAdicTopology
withIdeal
instIsAdicTopologyOfIsNoetherianRingOfCompactSpaceOfT2SpaceOfTotallyDisconnectedSpace 📖mathematicalIsAdicTopologyisOpen_maximalIdeal_pow'
exists_ideal_isOpen_and_subset
instIsHausdorffMaximalIdealOfIsNoetherianRing_fLT 📖
instIsLinearTopology_fLT 📖hasBasis_maximalIdeal_pow
instIsPrecompleteMaximalIdealOfCompactSpace_fLT 📖instDiscreteTopologyQuotientIdealHPowNatMaximalIdeal_fLT
denseRange_inverseLimit
instNonarchimedeanRing_fLT
instNonarchimedeanRing_fLT 📖IsAdicTopology.isAdic
instT2SpaceOfIsNoetherianRing_fLT 📖instNonarchimedeanRing_fLT
isOpen_maximalIdeal_pow''
isCompact_of_isNoetherianRing 📖Ideal.isCompact_of_fg
isOpen_iff_finite_quotient' 📖isOpen_maximalIdeal_pow''
isOpen_maximalIdeal' 📖isOpen_maximalIdeal_pow''
isOpen_maximalIdeal_pow' 📖isCompact_of_isNoetherianRing
isOpen_maximalIdeal_pow'' 📖IsAdicTopology.isAdic

IsLocalRing.Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
of_isLocalHom 📖IsLocalRing.instNonarchimedeanRing_fLT
IsLocalRing.hasBasis_maximalIdeal_pow

IsLocalRing.Ideal

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_of_fg 📖IsLocalRing.Submodule.isCompact_of_fg

IsLocalRing.IsAdicTopology

Theorems

NameKindAssumesProvesValidatesDepends On
isAdic 📖

IsLocalRing.IsModuleTopology

Theorems

NameKindAssumesProvesValidatesDepends On
compactSpace 📖IsLocalRing.Submodule.isCompact_of_fg

IsLocalRing.Submodule

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_of_fg 📖

---

← Back to Index