Documentation Verification Report

Section4

πŸ“ Source: Hochster/Section4.lean

Statistics

MetricCount
DefinitionsISupExtForV, IndExtForV, MemClosurePairs, z, isIndex, iSupExtForV, repPoly, Β«termΟƒ(_)»»)
8
Theoremseq_iUnion_indExtForV, mono_of_isIndex_of_isIndex, subset_of_le, apply_ne_zero_of_pi_valuation_of_v_extension_of_map_apply_eq, map_apply_le_of_pi_valuation_of_v_extension, map_div_apply_mul_map_apply_of_pi_valuation_of_forall_imp, map_div_apply_of_pi_valuation, map_mul_apply_of_pi_valuation, map_zpow_apply_of_pi_valuation, mem_closure, constantCoeff_repPoly_apply_eq_zero_of_apply_eq_zero_of_apply_eq_zero, constantCoeff_repPoly_apply_ne_zero_of_apply_eq_zero_of_apply_ne_zero, div_mul_cancel_of_forall_imp, mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le, mul_pow_natDegree_repPoly_apply_eq_zero_of_apply_eq_zero, mul_pow_natDegree_repPoly_apply_ne_zero_of_apply_ne_zero_of_apply_ne_zero, polynomial_eval_apply, polynomial_eval_apply', support_eq_inter_union_inter_of_mem_closure_insert_div, vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div, vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div₁, isCompact_support_of_mem_closure_insert_div, isCompact_vanishing_set_of_mem_closure_insert_div, closureInsertDiv, closureInsertDiv_isIndex_of_forall_map_apply_le_of_forall_ne_zero, exists_isIndex_iff_exists_isIndex_of_subset, exists_isIndex_of_forall_exist_eq_and_mem_and_mem_and_forall_imp_and_exists_isIndex, exists_isIndex_of_forall_springLike'_closure_insert_div_of_forall_isIndex, exists_le_map_apply_of_mem_closure_insert_div, exists_springLike'_closure_union_isIndex, exists_springLike'_iSupExtForV_isIndex, exists_springLike'_indExtForV_isIndex, false_of_apply_eq_zero_of_apply_ne_zero, forall_exists_le, forall_exists_of_ne_zero, forall_iff_of_ne, forall_le_of_ne, forall_map_apply_le_and_forall_apply_ne_zero_iff_exists_isIndex, iSupExtForV_isIndex, indExtForV, indExtForV_isIndex, isClosed_vanishing_set_of_forall_map_apply_le_of_forall_ne_zero, map_apply_eq_one_iff_apply_ne_zero_of_forall_map_apply_le_of_forall_ne_zero, map_apply_le_of_apply_ne_zero_of_map_apply_ne_one, map_apply_le_one_of_mem_closure_insert_div_of_forall_map_apply_le, mem_radical_span_singleton_of_forall_imp, support_is_patch_of_mem_closure_insert_div, vanishing_set_is_patch_of_mem_closure_insert_div, coeff_repPoly_mem, exists_finset_subset_and_mem_closure_union_of_mem_closure_union, exists_polynomial_of_mem_closure, exists_polynomial_of_mem_closure₁, repPoly_eval_eq, apply_le_generator_of_apply_lt_one, isClosed_iff_forall_closure_subset_of_isClosed_constructibleTop, mem_iSupExtForV_iff
56
Total64

ISupExtForV

Theorems

NameKindAssumesProvesValidatesDepends On
eq_iUnion_indExtForV πŸ“–mathematicalβ€”ISupExtForV
IndExtForV
β€”IndExtForV.subset_of_le

IndExtForV

Theorems

NameKindAssumesProvesValidatesDepends On
mono_of_isIndex_of_isIndex πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
IndExtForVβ€”SpringLike'.isIndex.exists_springLike'_indExtForV_isIndex
SpringLike'.isIndex.exists_isIndex_iff_exists_isIndex_of_subset
subset_of_le πŸ“–mathematicalβ€”IndExtForVβ€”β€”

MemClosurePairs

Definitions

NameCategoryTheorems
z πŸ“–CompOp
25 mathmath: SWICat.valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, SpringLike'.isIndex.forall_le_of_ne, SpringLike'.isIndex.forall_iff_of_ne, SpringLike'.isIndex.forall_exists_of_ne_zero, SpringLike'.isIndex.map_apply_le_of_apply_ne_zero_of_map_apply_ne_one, map_apply_le_of_pi_valuation_of_v_extension, SWICat.prod_le_valuationFun_apply_of_mem_support, SWICat.evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one, SWICat.valuationFun_apply_of_support_nonempty, map_mul_apply_of_pi_valuation, SWICat.valuationFun_apply_eq_iff_of_support_nonempty, SWICat.v_apply_ringHomToPiFractionRing_apply', map_div_apply_mul_map_apply_of_pi_valuation_of_forall_imp, map_zpow_apply_of_pi_valuation, map_div_apply_of_pi_valuation, SWICat.valuationFun_apply_X, SWICat.valuationFun_apply_monomial, SpringLike'.isIndex.exists_le_map_apply_of_mem_closure_insert_div, SWICat.v_apply_ringHomToPiFractionRing_apply, SWICat.valuationFun_apply_le_iff_forall_prod_le, SpringLike'.isIndex.forall_map_apply_le_and_forall_apply_ne_zero_iff_exists_isIndex, SWICat.valuationFun_apply_eq_iff_of_ne_zero, SWICat.valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty, SpringLike'.isIndex.forall_exists_le, mem_closure

Theorems

NameKindAssumesProvesValidatesDepends On
apply_ne_zero_of_pi_valuation_of_v_extension_of_map_apply_eq πŸ“–β€”SpringLike'
SpringLike'.isIndex
z
β€”β€”SpringLike'.isIndex.forall_iff_of_ne
map_apply_le_of_pi_valuation_of_v_extension πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
zβ€”SpringLike'.isIndex.forall_le_of_ne
map_mul_apply_of_pi_valuation
Pi.div_mul_cancel_of_forall_imp
map_div_apply_mul_map_apply_of_pi_valuation_of_forall_imp πŸ“–mathematicalβ€”zβ€”Pi.div_mul_cancel_of_forall_imp
map_mul_apply_of_pi_valuation
map_div_apply_of_pi_valuation πŸ“–mathematicalβ€”zβ€”β€”
map_mul_apply_of_pi_valuation πŸ“–mathematicalβ€”zβ€”β€”
map_zpow_apply_of_pi_valuation πŸ“–mathematicalβ€”zβ€”β€”
mem_closure πŸ“–mathematicalβ€”zβ€”β€”

Pi

Theorems

NameKindAssumesProvesValidatesDepends On
constantCoeff_repPoly_apply_eq_zero_of_apply_eq_zero_of_apply_eq_zero πŸ“–mathematicalβ€”Subring.repPolyβ€”Subring.repPoly_eval_eq
polynomial_eval_apply
constantCoeff_repPoly_apply_ne_zero_of_apply_eq_zero_of_apply_ne_zero πŸ“–β€”β€”β€”β€”Subring.repPoly_eval_eq
polynomial_eval_apply
div_mul_cancel_of_forall_imp πŸ“–β€”β€”β€”β€”β€”
mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le πŸ“–β€”Subring.repPolyβ€”β€”Subring.repPoly_eval_eq
Subring.coeff_repPoly_mem
div_mul_cancel_of_forall_imp
mul_pow_natDegree_repPoly_apply_eq_zero_of_apply_eq_zero πŸ“–mathematicalβ€”Subring.repPolyβ€”β€”
mul_pow_natDegree_repPoly_apply_ne_zero_of_apply_ne_zero_of_apply_ne_zero πŸ“–β€”β€”β€”β€”β€”
polynomial_eval_apply πŸ“–β€”β€”β€”β€”β€”
polynomial_eval_apply' πŸ“–β€”β€”β€”β€”β€”
support_eq_inter_union_inter_of_mem_closure_insert_div πŸ“–mathematicalβ€”Subring.repPolyβ€”constantCoeff_repPoly_apply_ne_zero_of_apply_eq_zero_of_apply_ne_zero
mul_pow_natDegree_repPoly_apply_ne_zero_of_apply_ne_zero_of_apply_ne_zero
polynomial_eval_apply
Subring.repPoly_eval_eq
vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div πŸ“–mathematicalβ€”Subring.repPolyβ€”constantCoeff_repPoly_apply_eq_zero_of_apply_eq_zero_of_apply_eq_zero
mul_pow_natDegree_repPoly_apply_eq_zero_of_apply_eq_zero
polynomial_eval_apply
Subring.repPoly_eval_eq
vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div₁ πŸ“–mathematicalβ€”Subring.repPolyβ€”constantCoeff_repPoly_apply_eq_zero_of_apply_eq_zero_of_apply_eq_zero
mul_pow_natDegree_repPoly_apply_eq_zero_of_apply_eq_zero
polynomial_eval_apply
Subring.repPoly_eval_eq

SpringLike'

Definitions

NameCategoryTheorems
isIndex πŸ“–CompData
1 mathmath: SWICat.springLike'_mapRingHomToPiFractionRing_isIndex

Theorems

NameKindAssumesProvesValidatesDepends On
isCompact_support_of_mem_closure_insert_div πŸ“–β€”SpringLike'β€”β€”compactSpace_of_isEmbedding_of_isClosed_constructibleTop_range
spectralSpace
support_is_patch_of_mem_closure_insert_div
isCompact_vanishing_set_of_mem_closure_insert_div πŸ“–β€”SpringLike'β€”β€”compactSpace_of_isEmbedding_of_isClosed_constructibleTop_range
spectralSpace
vanishing_set_is_patch_of_mem_closure_insert_div
support_is_patch_of_mem_closure_insert_div πŸ“–mathematicalSpringLike'ConstructibleTop
ConstructibleTop.instTopologicalSpace
β€”forall_isOpen
Pi.mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le
forall_isCompact
Subring.coeff_repPoly_mem
Pi.support_eq_inter_union_inter_of_mem_closure_insert_div
ConstructibleTop.instTopologicalSpace_eq_generateFrom_isOpen_isCompact_union_compl_image
spectralSpace
vanishing_set_is_patch_of_mem_closure_insert_div πŸ“–mathematicalSpringLike'ConstructibleTop
ConstructibleTop.instTopologicalSpace
β€”forall_isOpen
Pi.mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le
forall_isCompact
Subring.coeff_repPoly_mem
Pi.vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div
ConstructibleTop.instTopologicalSpace_eq_generateFrom_isOpen_isCompact_union_compl_image
spectralSpace

SpringLike'.isIndex

Definitions

NameCategoryTheorems
iSupExtForV πŸ“–CompOp
2 mathmath: iSupExtForV_springLike_spring_isAffine_of_isSimple, iSupExtForV_isIndex

Theorems

NameKindAssumesProvesValidatesDepends On
closureInsertDiv πŸ“–β€”SpringLike'
SpringLike'.isIndex
MemClosurePairs.z
β€”β€”SpringLike'.closureUnion
isClosed_vanishing_set_of_forall_map_apply_le_of_forall_ne_zero
SpringLike'.isCompact_support_of_mem_closure_insert_div
closureInsertDiv_isIndex_of_forall_map_apply_le_of_forall_ne_zero πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.z
closureInsertDivβ€”closureInsertDiv
forall_exists_of_ne_zero
map_apply_le_one_of_mem_closure_insert_div_of_forall_map_apply_le
map_apply_eq_one_iff_apply_ne_zero_of_forall_map_apply_le_of_forall_ne_zero
exists_le_map_apply_of_mem_closure_insert_div
exists_isIndex_iff_exists_isIndex_of_subset πŸ“–β€”SpringLike'
SpringLike'.isIndex
β€”β€”forall_map_apply_le_and_forall_apply_ne_zero_iff_exists_isIndex
exists_isIndex_of_forall_exist_eq_and_mem_and_mem_and_forall_imp_and_exists_isIndex πŸ“–β€”SpringLike'
SpringLike'.isIndex
β€”β€”exists_isIndex_of_forall_springLike'_closure_insert_div_of_forall_isIndex
exists_isIndex_of_forall_springLike'_closure_insert_div_of_forall_isIndex πŸ“–β€”SpringLike'
SpringLike'.isIndex
β€”β€”SpringLike'.congr_simp
congr_simp
forall_map_apply_le_and_forall_apply_ne_zero_iff_exists_isIndex
exists_le_map_apply_of_mem_closure_insert_div πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”forall_exists_le
Subring.coeff_repPoly_mem
Pi.mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le
Subring.repPoly_eval_eq
Pi.polynomial_eval_apply'
forall_le_of_ne
exists_springLike'_closure_union_isIndex πŸ“–β€”SpringLike'
SpringLike'.isIndex
β€”β€”SpringLike'.spectralSpace
SpringLike'.forall_isOpen
SpringLike'.forall_isCompact
SpringLike'.isTopologicalBasis
forall_exists_of_ne_zero
forall_le_of_ne
forall_iff_of_ne
forall_exists_le
exists_isIndex_of_forall_exist_eq_and_mem_and_mem_and_forall_imp_and_exists_isIndex
Subring.exists_finset_subset_and_mem_closure_union_of_mem_closure_union
exists_springLike'_iSupExtForV_isIndex πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
ISupExtForVβ€”SpringLike'.spectralSpace
SpringLike'.forall_isOpen
SpringLike'.forall_isCompact
SpringLike'.isTopologicalBasis
mem_iSupExtForV_iff
forall_exists_of_ne_zero
forall_le_of_ne
forall_iff_of_ne
forall_exists_le
exists_springLike'_indExtForV_isIndex
exists_springLike'_indExtForV_isIndex πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
IndExtForVβ€”exists_springLike'_closure_union_isIndex
false_of_apply_eq_zero_of_apply_ne_zero πŸ“–β€”SpringLike'
SpringLike'.isIndex
MemClosurePairs.z
β€”β€”forall_iff_of_ne
forall_exists_le πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”β€”
forall_exists_of_ne_zero πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”β€”
forall_iff_of_ne πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”β€”
forall_le_of_ne πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”β€”
forall_map_apply_le_and_forall_apply_ne_zero_iff_exists_isIndex πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”closureInsertDiv
closureInsertDiv_isIndex_of_forall_map_apply_le_of_forall_ne_zero
MemClosurePairs.map_apply_le_of_pi_valuation_of_v_extension
MemClosurePairs.apply_ne_zero_of_pi_valuation_of_v_extension_of_map_apply_eq
iSupExtForV_isIndex πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
ISupExtForV
iSupExtForV
β€”exists_springLike'_iSupExtForV_isIndex
indExtForV πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
IndExtForVβ€”exists_springLike'_indExtForV_isIndex
indExtForV_isIndex πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
IndExtForV
indExtForV
β€”exists_springLike'_indExtForV_isIndex
isClosed_vanishing_set_of_forall_map_apply_le_of_forall_ne_zero πŸ“–β€”SpringLike'
SpringLike'.isIndex
MemClosurePairs.z
β€”β€”isClosed_iff_forall_closure_subset_of_isClosed_constructibleTop
SpringLike'.spectralSpace
SpringLike'.vanishing_set_is_patch_of_mem_closure_insert_div
SpringLike'.forall_isOpen
Subring.coeff_repPoly_mem
Pi.constantCoeff_repPoly_apply_eq_zero_of_apply_eq_zero_of_apply_eq_zero
Pi.vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div
Subring.repPoly_eval_eq
Pi.polynomial_eval_apply'
forall_le_of_ne
Pi.vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div₁
forall_iff_of_ne
Pi.mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le
Pi.mul_pow_natDegree_repPoly_apply_eq_zero_of_apply_eq_zero
map_apply_eq_one_iff_apply_ne_zero_of_forall_map_apply_le_of_forall_ne_zero πŸ“–β€”SpringLike'
SpringLike'.isIndex
MemClosurePairs.z
β€”β€”Pi.support_eq_inter_union_inter_of_mem_closure_insert_div
forall_iff_of_ne
forall_le_of_ne
Pi.mul_pow_mem_of_mem_closure_insert_div_of_natDegree_repPoly_le
Subring.coeff_repPoly_mem
Pi.polynomial_eval_apply
Subring.repPoly_eval_eq
Pi.polynomial_eval_apply'
false_of_apply_eq_zero_of_apply_ne_zero
SpringLike'.forall_isOpen
MemClosurePairs.mem_closure
map_apply_le_of_apply_ne_zero_of_map_apply_ne_one πŸ“–mathematicalSpringLike'
SpringLike'.isIndex
MemClosurePairs.zβ€”forall_exists_of_ne_zero
forall_le_of_ne
map_apply_le_one_of_mem_closure_insert_div_of_forall_map_apply_le πŸ“–β€”SpringLike'
SpringLike'.isIndex
MemClosurePairs.z
β€”β€”Pi.support_eq_inter_union_inter_of_mem_closure_insert_div
forall_le_of_ne
Subring.coeff_repPoly_mem
Pi.polynomial_eval_apply
Subring.repPoly_eval_eq
mem_radical_span_singleton_of_forall_imp πŸ“–β€”SpringLike'
SpringLike'.isIndex
ISupExtForV
β€”β€”mem_iSupExtForV_iff
IndExtForV.subset_of_le
exists_springLike'_indExtForV_isIndex
forall_exists_le
map_apply_le_of_apply_ne_zero_of_map_apply_ne_one
forall_le_of_ne
forall_map_apply_le_and_forall_apply_ne_zero_iff_exists_isIndex
forall_iff_of_ne
Pi.div_mul_cancel_of_forall_imp

Subring

Definitions

NameCategoryTheorems
repPoly πŸ“–CompOp
7 mathmath: Pi.vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div₁, Pi.vanishing_set_eq_inter_union_inter_of_mem_closure_insert_div, Pi.mul_pow_natDegree_repPoly_apply_eq_zero_of_apply_eq_zero, Pi.constantCoeff_repPoly_apply_eq_zero_of_apply_eq_zero_of_apply_eq_zero, coeff_repPoly_mem, repPoly_eval_eq, Pi.support_eq_inter_union_inter_of_mem_closure_insert_div

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_repPoly_mem πŸ“–mathematicalβ€”repPolyβ€”exists_polynomial_of_mem_closure
exists_finset_subset_and_mem_closure_union_of_mem_closure_union πŸ“–β€”β€”β€”β€”β€”
exists_polynomial_of_mem_closure πŸ“–β€”β€”β€”β€”β€”
exists_polynomial_of_mem_closure₁ πŸ“–β€”β€”β€”β€”Set.insert.eq_1
exists_polynomial_of_mem_closure
repPoly_eval_eq πŸ“–mathematicalβ€”repPolyβ€”exists_polynomial_of_mem_closure

Valuation.IsRankOneDiscrete

Theorems

NameKindAssumesProvesValidatesDepends On
apply_le_generator_of_apply_lt_one πŸ“–β€”β€”β€”β€”β€”

(root)

Definitions

NameCategoryTheorems
ISupExtForV πŸ“–CompOp
5 mathmath: SpringLike'.isIndex.iSupExtForV_springLike_spring_isAffine_of_isSimple, ISupExtForV.eq_iUnion_indExtForV, mem_iSupExtForV_iff, SpringLike'.isIndex.exists_springLike'_iSupExtForV_isIndex, SpringLike'.isIndex.iSupExtForV_isIndex
IndExtForV πŸ“–CompOp
10 mathmath: SpringLike'.isIndex.indExtForVIsSimple_h, ISupExtForV.eq_iUnion_indExtForV, SpringLike'.isIndex.indExtForVIsSimple_h', mem_iSupExtForV_iff, SpringLike'.isIndex.indExtForV_isIndex, IndExtForV.subset_of_le, IndExtForV.mono_of_isIndex_of_isIndex, SpringLike'.isIndex.exists_springLike'_indExtForV_isIndex, SpringLike'.isIndex.indExtForVIsSimple_f, SpringLike'.isIndex.indExtForV
MemClosurePairs πŸ“–CompDataβ€”
Β«termΟƒ(_)Β» πŸ“–Β» "API Documentation")CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
isClosed_iff_forall_closure_subset_of_isClosed_constructibleTop πŸ“–β€”β€”β€”β€”mem_patch_closure_iff_mem_pt_closure
mem_iSupExtForV_iff πŸ“–mathematicalβ€”ISupExtForV
IndExtForV
β€”IndExtForV.subset_of_le

---

← Back to Index