Documentation Verification Report

Section6

📁 Source: Hochster/Section6.lean

Statistics

MetricCount
DefinitionsSWICat, E, Hom, comp, f, id, r, T, X, closureRangeUnionIsSimple, evalMapApplyPoly, g, instCategory, preV, tX, v, valuationFun, repMvPoly, repMvPoly', repMvPoly''
20
Theoremssupport_mul_C_of_ne_zero, comp_eq_comp, injective, isSpectralMap, T_apply_eq_zero_iff, T_apply_ne_zero_iff, T_mul_T_support_eq_inter, T_support_eq_g, coeff_evalMapApplyPoly, eq_generateFrom, evalMapApplyPoly_C, evalMapApplyPoly_X, evalMapApplyPoly_add, evalMapApplyPoly_def, evalMapApplyPoly_monomial, evalMapApplyPoly_monomial_support_eq_biInter, evalMapApplyPoly_mul, evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one, evalMapApplyPoly_one, evalMapApplyPoly_prod, evalMapApplyPoly_sum, evalMapApplyPoly_support_eq_biUnion, evalMapApplyPoly_support_eq_biUnion_biInter, evalMapApplyPoly_zero, eval_map_ringHom_apply_eq_eval_map_C_apply', exists_valuationFun_apply_eq_two_pow_of_ne_zero, ext, ext_iff, finite_evalMapApplyPoly_image, finite_image_T, forall_isCompact, forall_isOpen, isCompact_evalMapApplyPoly_support, isOpen_evalMapApplyPoly_support, prod_T_support_eq_biInter, prod_le_valuationFun_apply_of_mem_support, spectralSpace, springLike', springLike'_mapRingHomToPiFractionRing_isIndex, support_evalMapApplyPoly, support_evalMapApplyPoly_subset, v_apply_ringHomToPiFractionRing_apply, v_apply_ringHomToPiFractionRing_apply', valuationFun_apply_C, valuationFun_apply_X, valuationFun_apply_add_eq_apply_of_lt, valuationFun_apply_add_le_max, valuationFun_apply_eq_iff_exist_of_support_nonempty, valuationFun_apply_eq_iff_of_ne_zero, valuationFun_apply_eq_iff_of_ne_zero', valuationFun_apply_eq_iff_of_support_nonempty, valuationFun_apply_eq_iff_of_support_nonempty', valuationFun_apply_eq_of_forall_prod_eq, valuationFun_apply_eq_of_forall_valuationFun_apply_eq, valuationFun_apply_eq_zero_iff, valuationFun_apply_le_iff_forall_prod_le, valuationFun_apply_le_iff_forall_valuationFun_apply_le, valuationFun_apply_le_one, valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty, valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_ne_zero, valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_support_nonempty, valuationFun_apply_monomial, valuationFun_apply_monomial_mul_monomial, valuationFun_apply_mul, valuationFun_apply_mul_eq_of_forall_of_forall, valuationFun_apply_mul_le_mul, valuationFun_apply_of_support_nonempty, valuationFun_apply_zero, coeff_repMvPoly_mem, exists_mvPolynomial_of_le_range_of_mem_closure, exists_mvPolynomial_of_le_range_of_subset_range_of_mem_closure, exists_mvPolynomial_of_mem_closure, exists_mvPolynomial_of_mem_closure', map_repMvPoly''_eval_eq, map_repMvPoly'_eval_eq, repMvPoly_eval_eq
77
Total97

MvPolynomial

Theorems

NameKindAssumesProvesValidatesDepends On
support_mul_C_of_ne_zero 📖

SWICat

Definitions

NameCategoryTheorems
E 📖CompOp
49 mathmath: valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, valuationFun_apply_add_le_max, prod_T_support_eq_biInter, support_evalMapApplyPoly_subset, finite_image_T, T_mul_T_support_eq_inter, evalMapApplyPoly_one, valuationFun_apply_add_eq_apply_of_lt, eq_generateFrom, valuationFun_apply_eq_zero_iff, ext_iff, evalMapApplyPoly_mul, valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_ne_zero, valuationFun_apply_eq_iff_of_ne_zero', evalMapApplyPoly_monomial, valuationFun_apply_zero, evalMapApplyPoly_add, evalMapApplyPoly_def, evalMapApplyPoly_support_eq_biUnion_biInter, Hom.injective, v_apply_ringHomToPiFractionRing_apply', valuationFun_apply_monomial_mul_monomial, Hom.comp_eq_comp, valuationFun_apply_C, springLike', isOpen_evalMapApplyPoly_support, valuationFun_apply_X, valuationFun_apply_le_iff_forall_valuationFun_apply_le, finite_evalMapApplyPoly_image, evalMapApplyPoly_X, T_apply_eq_zero_iff, valuationFun_apply_monomial, springLike'_mapRingHomToPiFractionRing_isIndex, eval_map_ringHom_apply_eq_eval_map_C_apply', T_support_eq_g, v_apply_ringHomToPiFractionRing_apply, evalMapApplyPoly_C, valuationFun_apply_le_iff_forall_prod_le, valuationFun_apply_eq_iff_of_ne_zero, valuationFun_apply_mul_le_mul, evalMapApplyPoly_sum, support_evalMapApplyPoly, coeff_evalMapApplyPoly, valuationFun_apply_mul, evalMapApplyPoly_monomial_support_eq_biInter, evalMapApplyPoly_prod, evalMapApplyPoly_zero, evalMapApplyPoly_support_eq_biUnion, isCompact_evalMapApplyPoly_support
Hom 📖CompData
T 📖CompOp
10 mathmath: prod_T_support_eq_biInter, finite_image_T, T_mul_T_support_eq_inter, evalMapApplyPoly_def, springLike', evalMapApplyPoly_X, T_apply_eq_zero_iff, springLike'_mapRingHomToPiFractionRing_isIndex, eval_map_ringHom_apply_eq_eval_map_C_apply', T_support_eq_g
X 📖CompOp
37 mathmath: valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, prod_T_support_eq_biInter, finite_image_T, T_mul_T_support_eq_inter, T_apply_ne_zero_iff, eq_generateFrom, ext_iff, prod_le_valuationFun_apply_of_mem_support, evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one, forall_isCompact, spectralSpace, evalMapApplyPoly_monomial, evalMapApplyPoly_def, evalMapApplyPoly_support_eq_biUnion_biInter, valuationFun_apply_of_support_nonempty, valuationFun_apply_eq_iff_of_support_nonempty, v_apply_ringHomToPiFractionRing_apply', forall_isOpen, Hom.comp_eq_comp, Hom.isSpectralMap, springLike', isOpen_evalMapApplyPoly_support, valuationFun_apply_X, finite_evalMapApplyPoly_image, T_apply_eq_zero_iff, valuationFun_apply_monomial, springLike'_mapRingHomToPiFractionRing_isIndex, eval_map_ringHom_apply_eq_eval_map_C_apply', T_support_eq_g, v_apply_ringHomToPiFractionRing_apply, valuationFun_apply_le_iff_forall_prod_le, valuationFun_apply_eq_iff_of_ne_zero, valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty, coeff_evalMapApplyPoly, evalMapApplyPoly_monomial_support_eq_biInter, evalMapApplyPoly_support_eq_biUnion, isCompact_evalMapApplyPoly_support
closureRangeUnionIsSimple 📖CompOp
evalMapApplyPoly 📖CompOp
20 mathmath: support_evalMapApplyPoly_subset, evalMapApplyPoly_one, evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one, evalMapApplyPoly_mul, evalMapApplyPoly_monomial, evalMapApplyPoly_add, evalMapApplyPoly_def, evalMapApplyPoly_support_eq_biUnion_biInter, isOpen_evalMapApplyPoly_support, finite_evalMapApplyPoly_image, evalMapApplyPoly_X, evalMapApplyPoly_C, evalMapApplyPoly_sum, support_evalMapApplyPoly, coeff_evalMapApplyPoly, evalMapApplyPoly_monomial_support_eq_biInter, evalMapApplyPoly_prod, evalMapApplyPoly_zero, evalMapApplyPoly_support_eq_biUnion, isCompact_evalMapApplyPoly_support
g 📖CompOp
22 mathmath: valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, prod_T_support_eq_biInter, T_apply_ne_zero_iff, eq_generateFrom, ext_iff, prod_le_valuationFun_apply_of_mem_support, forall_isCompact, evalMapApplyPoly_monomial, evalMapApplyPoly_support_eq_biUnion_biInter, valuationFun_apply_of_support_nonempty, valuationFun_apply_eq_iff_of_support_nonempty, forall_isOpen, Hom.comp_eq_comp, valuationFun_apply_X, T_apply_eq_zero_iff, valuationFun_apply_monomial, T_support_eq_g, valuationFun_apply_le_iff_forall_prod_le, valuationFun_apply_eq_iff_of_ne_zero, valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty, coeff_evalMapApplyPoly, evalMapApplyPoly_monomial_support_eq_biInter
instCategory 📖CompOp
preV 📖CompOp
2 mathmath: v_apply_ringHomToPiFractionRing_apply', v_apply_ringHomToPiFractionRing_apply
tX 📖CompOp
22 mathmath: valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, eq_generateFrom, ext_iff, prod_le_valuationFun_apply_of_mem_support, evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one, forall_isCompact, spectralSpace, valuationFun_apply_of_support_nonempty, valuationFun_apply_eq_iff_of_support_nonempty, v_apply_ringHomToPiFractionRing_apply', forall_isOpen, Hom.isSpectralMap, springLike', isOpen_evalMapApplyPoly_support, valuationFun_apply_X, valuationFun_apply_monomial, springLike'_mapRingHomToPiFractionRing_isIndex, v_apply_ringHomToPiFractionRing_apply, valuationFun_apply_le_iff_forall_prod_le, valuationFun_apply_eq_iff_of_ne_zero, valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty, isCompact_evalMapApplyPoly_support
v 📖CompOp
3 mathmath: v_apply_ringHomToPiFractionRing_apply', springLike'_mapRingHomToPiFractionRing_isIndex, v_apply_ringHomToPiFractionRing_apply
valuationFun 📖CompOp
26 mathmath: valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero, valuationFun_apply_add_le_max, valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_support_nonempty, valuationFun_apply_eq_zero_iff, prod_le_valuationFun_apply_of_mem_support, evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one, valuationFun_apply_eq_of_forall_prod_eq, valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_ne_zero, valuationFun_apply_le_one, valuationFun_apply_eq_iff_of_ne_zero', valuationFun_apply_zero, valuationFun_apply_of_support_nonempty, valuationFun_apply_eq_iff_of_support_nonempty, valuationFun_apply_monomial_mul_monomial, valuationFun_apply_eq_iff_exist_of_support_nonempty, valuationFun_apply_C, valuationFun_apply_X, valuationFun_apply_le_iff_forall_valuationFun_apply_le, valuationFun_apply_monomial, valuationFun_apply_le_iff_forall_prod_le, valuationFun_apply_eq_iff_of_ne_zero, valuationFun_apply_mul_le_mul, valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty, valuationFun_apply_eq_iff_of_support_nonempty', exists_valuationFun_apply_eq_two_pow_of_ne_zero, valuationFun_apply_mul

Theorems

NameKindAssumesProvesValidatesDepends On
T_apply_eq_zero_iff 📖mathematicalT
E
X
g
T_apply_ne_zero_iff 📖mathematicalX
g
T_mul_T_support_eq_inter 📖mathematicalX
E
T
T_support_eq_g 📖mathematicalX
E
T
g
coeff_evalMapApplyPoly 📖mathematicalE
evalMapApplyPoly
X
g
evalMapApplyPoly_add
evalMapApplyPoly_monomial
eq_generateFrom 📖mathematicaltX
X
E
g
evalMapApplyPoly_C 📖mathematicalevalMapApplyPoly
E
evalMapApplyPoly_X 📖mathematicalevalMapApplyPoly
E
T
evalMapApplyPoly_add 📖mathematicalevalMapApplyPoly
E
evalMapApplyPoly_def 📖mathematicalevalMapApplyPoly
E
X
T
evalMapApplyPoly_monomial 📖mathematicalevalMapApplyPoly
E
X
g
evalMapApplyPoly_monomial_support_eq_biInter 📖mathematicalX
E
evalMapApplyPoly
g
evalMapApplyPoly_monomial
evalMapApplyPoly_mul 📖mathematicalevalMapApplyPoly
E
evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one 📖mathematicalvaluationFun
evalMapApplyPoly
X
MemClosurePairs.z
tX
evalMapApplyPoly_support_eq_biUnion_biInter
MemClosurePairs.mem_closure
forall_isOpen
support_evalMapApplyPoly
valuationFun_apply_eq_iff_of_support_nonempty'
valuationFun_apply_le_one
valuationFun_apply_monomial
valuationFun_apply_eq_iff_of_ne_zero'
support_evalMapApplyPoly_subset
evalMapApplyPoly_one 📖mathematicalevalMapApplyPoly
E
evalMapApplyPoly_prod 📖mathematicalevalMapApplyPoly
E
evalMapApplyPoly_sum 📖mathematicalevalMapApplyPoly
E
evalMapApplyPoly_support_eq_biUnion 📖mathematicalX
E
evalMapApplyPoly
support_evalMapApplyPoly_subset
coeff_evalMapApplyPoly
evalMapApplyPoly_monomial
evalMapApplyPoly_support_eq_biUnion_biInter 📖mathematicalX
E
evalMapApplyPoly
g
evalMapApplyPoly_support_eq_biUnion
evalMapApplyPoly_monomial_support_eq_biInter
evalMapApplyPoly_zero 📖mathematicalevalMapApplyPoly
E
eval_map_ringHom_apply_eq_eval_map_C_apply' 📖mathematicalE
X
T
exists_valuationFun_apply_eq_two_pow_of_ne_zero 📖mathematicalvaluationFunvaluationFun_apply_eq_iff_of_support_nonempty
ext 📖X
tX
E
g
ext_iff 📖mathematicalX
tX
E
g
ext
finite_evalMapApplyPoly_image 📖mathematicalE
X
evalMapApplyPoly
evalMapApplyPoly_C
evalMapApplyPoly_add
evalMapApplyPoly_mul
evalMapApplyPoly_X
finite_image_T
finite_image_T 📖mathematicalE
X
T
forall_isCompact 📖mathematicalX
tX
g
forall_isOpen 📖mathematicalX
tX
g
isCompact_evalMapApplyPoly_support 📖mathematicalX
tX
E
evalMapApplyPoly
Finset.biInter_mem_of_finiteInter
finiteInter_isOpen_and_isCompact
spectralSpace
forall_isOpen
forall_isCompact
evalMapApplyPoly_support_eq_biUnion_biInter
isOpen_evalMapApplyPoly_support 📖mathematicalX
tX
E
evalMapApplyPoly
forall_isOpen
evalMapApplyPoly_support_eq_biUnion_biInter
prod_T_support_eq_biInter 📖mathematicalX
E
T
g
T_apply_ne_zero_iff
prod_le_valuationFun_apply_of_mem_support 📖mathematicalEX
g
MemClosurePairs.z
tX
valuationFun
spectralSpace 📖mathematicalX
tX
springLike' 📖mathematicalSpringLike'
X
tX
E
T
spectralSpace
Subring.exists_mvPolynomial_of_le_range_of_subset_range_of_mem_closure
isOpen_evalMapApplyPoly_support
isCompact_evalMapApplyPoly_support
eq_generateFrom
prod_T_support_eq_biInter
springLike'_mapRingHomToPiFractionRing_isIndex 📖mathematicalSpringLike'.isIndex
X
tX
E
Pi.ringHomToPiFractionRing
T
SpringLike'.mapRingHomToPiFractionRing
springLike'
v
SpringLike'.mapRingHomToPiFractionRing
springLike'
valuationFun_apply_zero
valuationFun_apply_mul
valuationFun_apply_add_le_max
exists_valuationFun_apply_eq_two_pow_of_ne_zero
valuationFun_apply_le_one
v_apply_ringHomToPiFractionRing_apply
Subring.exists_mvPolynomial_of_le_range_of_subset_range_of_mem_closure
evalMapApplyPoly_ne_zero_iff_valuationFun_apply_evalMapApplyPoly_eq_one
valuationFun_apply_eq_iff_of_support_nonempty
support_evalMapApplyPoly_subset
support_evalMapApplyPoly 📖mathematicalE
evalMapApplyPoly
coeff_evalMapApplyPoly
support_evalMapApplyPoly_subset 📖mathematicalE
evalMapApplyPoly
support_evalMapApplyPoly
v_apply_ringHomToPiFractionRing_apply 📖mathematicalE
v
X
Pi.ringHomToPiFractionRing
MemClosurePairs.z
tX
preV
v_apply_ringHomToPiFractionRing_apply' 📖mathematicalE
v
X
Pi.ringHomToPiFractionRing
MemClosurePairs.z
tX
preV
valuationFun_apply_C 📖mathematicalvaluationFun
E
valuationFun_apply_zero
valuationFun_apply_of_support_nonempty
valuationFun_apply_X 📖mathematicalvaluationFun
E
X
g
MemClosurePairs.z
tX
valuationFun_apply_of_support_nonempty
valuationFun_apply_add_eq_apply_of_lt 📖mathematicalvaluationFunEvaluationFun_apply_zero
valuationFun_apply_eq_iff_of_support_nonempty
prod_le_valuationFun_apply_of_mem_support
valuationFun_apply_add_le_max 📖mathematicalvaluationFun
E
valuationFun_apply_le_iff_forall_prod_le
prod_le_valuationFun_apply_of_mem_support
valuationFun_apply_eq_iff_exist_of_support_nonempty 📖mathematicalEvaluationFunvaluationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_ne_zero
valuationFun_apply_eq_zero_iff
valuationFun_apply_le_iff_forall_valuationFun_apply_le
valuationFun_apply_eq_iff_of_support_nonempty
valuationFun_apply_monomial
valuationFun_apply_add_eq_apply_of_lt
valuationFun_apply_eq_of_forall_valuationFun_apply_eq
valuationFun_apply_eq_iff_of_ne_zero 📖mathematicalvaluationFun
E
X
g
MemClosurePairs.z
tX
valuationFun_apply_eq_iff_of_support_nonempty
valuationFun_apply_zero
valuationFun_apply_eq_iff_of_ne_zero' 📖mathematicalvaluationFun
E
valuationFun_apply_monomial
valuationFun_apply_eq_iff_of_ne_zero
valuationFun_apply_eq_iff_of_support_nonempty 📖mathematicalEvaluationFun
X
g
MemClosurePairs.z
tX
prod_le_valuationFun_apply_of_mem_support
valuationFun_apply_of_support_nonempty
valuationFun_apply_eq_iff_of_support_nonempty' 📖mathematicalEvaluationFunvaluationFun_apply_monomial
valuationFun_apply_eq_iff_of_support_nonempty
valuationFun_apply_eq_of_forall_prod_eq 📖mathematicalE
X
g
MemClosurePairs.z
tX
valuationFunvaluationFun_apply_eq_iff_of_support_nonempty
valuationFun_apply_eq_of_forall_valuationFun_apply_eq 📖E
valuationFun
valuationFun_apply_eq_of_forall_prod_eq
valuationFun_apply_monomial
valuationFun_apply_eq_zero_iff 📖mathematicalvaluationFun
E
valuationFun_apply_eq_iff_of_support_nonempty
valuationFun_apply_zero
valuationFun_apply_le_iff_forall_prod_le 📖mathematicalvaluationFun
E
X
g
MemClosurePairs.z
tX
valuationFun_apply_le_iff_forall_valuationFun_apply_le 📖mathematicalvaluationFun
E
valuationFun_apply_monomial
valuationFun_apply_le_iff_forall_prod_le
valuationFun_apply_le_one 📖mathematicalvaluationFun
valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero 📖mathematicalvaluationFun
E
X
g
MemClosurePairs.z
tX
valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty 📖mathematicalEvaluationFun
X
g
MemClosurePairs.z
tX
valuationFun_apply_of_support_nonempty
valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_ne_zero 📖mathematicalvaluationFun
E
valuationFun_apply_monomial
valuationFun_apply_lt_iff_forall_prod_lt_of_ne_zero
valuationFun_apply_lt_iff_forall_valuationFun_apply_lt_of_support_nonempty 📖mathematicalEvaluationFunvaluationFun_apply_monomial
valuationFun_apply_lt_iff_forall_prod_lt_of_support_nonempty
valuationFun_apply_monomial 📖mathematicalvaluationFun
E
X
g
MemClosurePairs.z
tX
valuationFun_apply_zero
valuationFun_apply_monomial_mul_monomial 📖mathematicalvaluationFun
E
valuationFun_apply_monomial
valuationFun_apply_mul 📖mathematicalvaluationFun
E
valuationFun_apply_eq_iff_exist_of_support_nonempty
valuationFun_apply_mul_eq_of_forall_of_forall
valuationFun_apply_eq_zero_iff
valuationFun_apply_add_eq_apply_of_lt
valuationFun_apply_add_le_max
valuationFun_apply_mul_le_mul
valuationFun_apply_eq_of_forall_valuationFun_apply_eq
valuationFun_apply_zero
valuationFun_apply_mul_eq_of_forall_of_forall 📖E
valuationFun
valuationFun_apply_eq_of_forall_valuationFun_apply_eq
valuationFun_apply_monomial_mul_monomial
valuationFun_apply_mul_le_mul 📖mathematicalvaluationFun
E
valuationFun_apply_le_iff_forall_prod_le
valuationFun_apply_le_iff_forall_valuationFun_apply_le
valuationFun_apply_monomial_mul_monomial
valuationFun_apply_monomial
valuationFun_apply_of_support_nonempty 📖mathematicalEvaluationFun
X
g
MemClosurePairs.z
tX
valuationFun_apply_zero 📖mathematicalvaluationFun
E

SWICat.Hom

Definitions

NameCategoryTheorems
comp 📖CompOp
f 📖CompOp
2 mathmath: comp_eq_comp, isSpectralMap
id 📖CompOp
r 📖CompOp
2 mathmath: injective, comp_eq_comp

Theorems

NameKindAssumesProvesValidatesDepends On
comp_eq_comp 📖mathematicalSWICat.E
SWICat.X
SWICat.g
r
f
injective 📖mathematicalSWICat.E
r
isSpectralMap 📖mathematicalSWICat.X
SWICat.tX
f

Subring

Definitions

NameCategoryTheorems
repMvPoly 📖CompOp
2 mathmath: repMvPoly_eval_eq, coeff_repMvPoly_mem
repMvPoly' 📖CompOp
1 mathmath: map_repMvPoly'_eval_eq
repMvPoly'' 📖CompOp
1 mathmath: map_repMvPoly''_eval_eq

Theorems

NameKindAssumesProvesValidatesDepends On
coeff_repMvPoly_mem 📖mathematicalrepMvPolyexists_mvPolynomial_of_mem_closure
exists_mvPolynomial_of_le_range_of_mem_closure 📖
exists_mvPolynomial_of_le_range_of_subset_range_of_mem_closure 📖
exists_mvPolynomial_of_mem_closure 📖exists_mvPolynomial_of_mem_closure'
exists_mvPolynomial_of_mem_closure' 📖
map_repMvPoly''_eval_eq 📖mathematicalrepMvPoly''exists_mvPolynomial_of_le_range_of_subset_range_of_mem_closure
map_repMvPoly'_eval_eq 📖mathematicalrepMvPoly'exists_mvPolynomial_of_le_range_of_mem_closure
repMvPoly_eval_eq 📖mathematicalrepMvPolyexists_mvPolynomial_of_mem_closure

(root)

Definitions

NameCategoryTheorems
SWICat 📖CompData

---

← Back to Index