Documentation Verification Report

Basic

πŸ“ Source: PhysLean/CondensedMatter/TightBindingChain/Basic.lean

Statistics

MetricCount
DefinitionsTightBindingChain, BrillouinZone, E0, N, QuantaWaveNumber, a, energyEigenstate, energyEigenvalue, hamiltonian, localizedComp, localizedState, t, «term|_⟩», «term|_⟩⟨_|», «term⟨_|_⟩»
15
TheoremsN_ne_zero, a_pos, energyEigenstate_orthogonal, energy_localizedState, hamiltonian_apply_localizedState, hamiltonian_energyEigenstate, hamiltonian_hermitian, instNeZeroNatN, localizedComp_adjoint, localizedComp_apply_localizedState, localizedState_orthonormal, localizedState_orthonormal_eq_ite, quantaWaveNumber_exp_N, quantaWaveNumber_exp_add_one, quantaWaveNumber_exp_sub_one, quantaWaveNumber_subset_brillouinZone
16
Total31

CondensedMatter

Definitions

NameCategoryTheorems
TightBindingChain πŸ“–CompDataβ€”

CondensedMatter.TightBindingChain

Definitions

NameCategoryTheorems
BrillouinZone πŸ“–CompOp
1 mathmath: quantaWaveNumber_subset_brillouinZone
E0 πŸ“–CompOp
2 mathmath: energy_localizedState, hamiltonian_apply_localizedState
N πŸ“–CompOp
13 mathmath: localizedState_orthonormal_eq_ite, localizedState_orthonormal, quantaWaveNumber_exp_N, N_ne_zero, hamiltonian_hermitian, quantaWaveNumber_exp_add_one, localizedComp_adjoint, quantaWaveNumber_exp_sub_one, energyEigenstate_orthogonal, localizedComp_apply_localizedState, instNeZeroNatN, hamiltonian_apply_localizedState, hamiltonian_energyEigenstate
QuantaWaveNumber πŸ“–CompOp
5 mathmath: quantaWaveNumber_exp_N, quantaWaveNumber_exp_add_one, quantaWaveNumber_exp_sub_one, energyEigenstate_orthogonal, quantaWaveNumber_subset_brillouinZone
a πŸ“–CompOp
4 mathmath: quantaWaveNumber_exp_N, quantaWaveNumber_exp_add_one, a_pos, quantaWaveNumber_exp_sub_one
energyEigenstate πŸ“–CompOp
2 mathmath: energyEigenstate_orthogonal, hamiltonian_energyEigenstate
energyEigenvalue πŸ“–CompOp
1 mathmath: hamiltonian_energyEigenstate
hamiltonian πŸ“–CompOp
4 mathmath: hamiltonian_hermitian, energy_localizedState, hamiltonian_apply_localizedState, hamiltonian_energyEigenstate
localizedComp πŸ“–CompOp
2 mathmath: localizedComp_adjoint, localizedComp_apply_localizedState
localizedState πŸ“–CompOp
5 mathmath: localizedState_orthonormal_eq_ite, localizedState_orthonormal, energy_localizedState, localizedComp_apply_localizedState, hamiltonian_apply_localizedState
t πŸ“–CompOp
1 mathmath: hamiltonian_apply_localizedState
Β«term|_⟩» πŸ“–CompOpβ€”
Β«term|_⟩⟨_|Β» πŸ“–CompOpβ€”
Β«term⟨_|_⟩» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
N_ne_zero πŸ“–mathematicalβ€”Nβ€”β€”
a_pos πŸ“–mathematicalβ€”aβ€”β€”
energyEigenstate_orthogonal πŸ“–mathematicalβ€”QuantaWaveNumber
HilbertSpace
QuantumMechanics.FiniteHilbertSpace
N
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
energyEigenstate
β€”localizedState_orthonormal
quantaWaveNumber_exp_N
a_pos
instNeZeroNatN
energy_localizedState πŸ“–mathematicalNHilbertSpace
QuantumMechanics.FiniteHilbertSpace
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
localizedState
QuantumMechanics.instModuleComplexFiniteHilbertSpace
hamiltonian
E0
β€”instNeZeroNatN
hamiltonian_apply_localizedState
localizedState_orthonormal_eq_ite
hamiltonian_apply_localizedState πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
N
QuantumMechanics.instModuleComplexFiniteHilbertSpace
hamiltonian
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
localizedState
E0
t
instNeZeroNatN
β€”instNeZeroNatN
localizedComp_apply_localizedState
hamiltonian_energyEigenstate πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
N
QuantumMechanics.instModuleComplexFiniteHilbertSpace
hamiltonian
energyEigenstate
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
energyEigenvalue
β€”energyEigenstate.eq_1
instNeZeroNatN
hamiltonian_apply_localizedState
quantaWaveNumber_exp_sub_one
quantaWaveNumber_exp_add_one
hamiltonian_hermitian πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.FiniteHilbertSpace
N
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
QuantumMechanics.instModuleComplexFiniteHilbertSpace
hamiltonian
β€”instNeZeroNatN
localizedComp_adjoint
instNeZeroNatN πŸ“–mathematicalβ€”Nβ€”N_ne_zero
localizedComp_adjoint πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.FiniteHilbertSpace
N
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
QuantumMechanics.instModuleComplexFiniteHilbertSpace
localizedComp
β€”β€”
localizedComp_apply_localizedState πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
N
QuantumMechanics.instModuleComplexFiniteHilbertSpace
localizedComp
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
localizedState
QuantumMechanics.instAddCommGroupFiniteHilbertSpace
β€”localizedComp.eq_1
localizedState_orthonormal
localizedState_orthonormal πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
N
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
localizedState
β€”β€”
localizedState_orthonormal_eq_ite πŸ“–mathematicalβ€”HilbertSpace
QuantumMechanics.FiniteHilbertSpace
N
QuantumMechanics.instNormedAddCommGroupFiniteHilbertSpace
QuantumMechanics.instInnerProductSpaceComplexFiniteHilbertSpace
localizedState
β€”localizedState_orthonormal
quantaWaveNumber_exp_N πŸ“–mathematicalβ€”QuantaWaveNumber
N
a
β€”instNeZeroNatN
a_pos
quantaWaveNumber_exp_add_one πŸ“–mathematicalβ€”QuantaWaveNumber
N
instNeZeroNatN
a
β€”instNeZeroNatN
quantaWaveNumber_exp_sub_one
quantaWaveNumber_exp_sub_one πŸ“–mathematicalβ€”QuantaWaveNumber
N
instNeZeroNatN
a
β€”instNeZeroNatN
quantaWaveNumber_exp_N
quantaWaveNumber_subset_brillouinZone πŸ“–mathematicalβ€”QuantaWaveNumber
BrillouinZone
β€”instNeZeroNatN
a_pos

---

← Back to Index