Documentation Verification Report

Basic

πŸ“ Source: PhysLean/Mathematics/InnerProductSpace/Basic.lean

Statistics

MetricCount
DefinitionsInnerProductSpace', core, equivL2, fromL2, toInnerProductSpaceWithL2, toInnerWithL2, toL2, toNormWithL2, toNormedAddCommGroupWitL2, toNormedSpaceWithL2, toNormβ‚‚, Normβ‚‚, normβ‚‚, instCoreOfInnerProductSpace', instInnerOfInnerProductSpace', instInnerProd_physLean, instInnerProductSpace', instInnerProductSpace'Forall, instInnerProductSpace'Prod, Β«termβ€–_β€–β‚‚Β»
20
Theoremsinner', inner', inner', fromL2_inner_left, fromL2_toL2, inner_top_equiv_norm, instCompleteSpaceWithLpOfNatENNReal, norm_withLp2_eq_norm2, normβ‚‚_sq_eq_re_inner, ofLp_inner_left, toL2_fromL2, toL2_inner_left, toLp_inner_left, ext_inner_left', ext_inner_right', inner_add_left', inner_add_right', inner_conj_symm', inner_neg_left', inner_neg_right', inner_self_eq_zero', inner_smul_left', inner_smul_right', inner_sub_left', inner_sub_right', inner_sum', inner_zero_left', inner_zero_right', isBoundedBilinearMap_inner', prod_inner_apply', real_inner_comm', real_inner_self_nonneg'
32
Total52

ContDiff

Theorems

NameKindAssumesProvesValidatesDepends On
inner' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”

ContDiffAt

Theorems

NameKindAssumesProvesValidatesDepends On
inner' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”

Continuous

Theorems

NameKindAssumesProvesValidatesDepends On
inner' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”

InnerProductSpace'

Definitions

NameCategoryTheorems
core πŸ“–CompOp
2 mathmath: normβ‚‚_sq_eq_re_inner, inner_top_equiv_norm
equivL2 πŸ“–CompOpβ€”
fromL2 πŸ“–CompOp
6 mathmath: fromL2_inner_left, ContinuousLinearMap.hasAdjoint, toL2_fromL2, toL2_inner_left, adjoint_eq_clm_adjoint, fromL2_toL2
toInnerProductSpaceWithL2 πŸ“–CompOp
2 mathmath: ContinuousLinearMap.hasAdjoint, adjoint_eq_clm_adjoint
toInnerWithL2 πŸ“–CompOp
4 mathmath: fromL2_inner_left, ofLp_inner_left, toL2_inner_left, toLp_inner_left
toL2 πŸ“–CompOp
6 mathmath: fromL2_inner_left, ContinuousLinearMap.hasAdjoint, toL2_fromL2, toL2_inner_left, adjoint_eq_clm_adjoint, fromL2_toL2
toNormWithL2 πŸ“–CompOp
1 mathmath: norm_withLp2_eq_norm2
toNormedAddCommGroupWitL2 πŸ“–CompOp
7 mathmath: fromL2_inner_left, ContinuousLinearMap.hasAdjoint, toL2_fromL2, toL2_inner_left, instCompleteSpaceWithLpOfNatENNReal, adjoint_eq_clm_adjoint, fromL2_toL2
toNormedSpaceWithL2 πŸ“–CompOpβ€”
toNormβ‚‚ πŸ“–CompOp
2 mathmath: normβ‚‚_sq_eq_re_inner, norm_withLp2_eq_norm2

Theorems

NameKindAssumesProvesValidatesDepends On
fromL2_inner_left πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'
toNormedAddCommGroupWitL2
fromL2
toInnerWithL2
toL2
β€”β€”
fromL2_toL2 πŸ“–mathematicalβ€”toNormedAddCommGroupWitL2
fromL2
toL2
β€”β€”
inner_top_equiv_norm πŸ“–mathematicalβ€”coreβ€”β€”
instCompleteSpaceWithLpOfNatENNReal πŸ“–mathematicalβ€”toNormedAddCommGroupWitL2β€”β€”
norm_withLp2_eq_norm2 πŸ“–mathematicalβ€”toNormWithL2
Normβ‚‚.normβ‚‚
toNormβ‚‚
β€”normβ‚‚_sq_eq_re_inner
normβ‚‚_sq_eq_re_inner πŸ“–mathematicalβ€”Normβ‚‚.normβ‚‚
toNormβ‚‚
core
β€”β€”
ofLp_inner_left πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'
toInnerWithL2
β€”fromL2_inner_left
toL2_fromL2 πŸ“–mathematicalβ€”toNormedAddCommGroupWitL2
toL2
fromL2
β€”β€”
toL2_inner_left πŸ“–mathematicalβ€”toInnerWithL2
toNormedAddCommGroupWitL2
toL2
instInnerOfInnerProductSpace'
fromL2
β€”β€”
toLp_inner_left πŸ“–mathematicalβ€”toInnerWithL2
instInnerOfInnerProductSpace'
β€”toL2_inner_left

Normβ‚‚

Definitions

NameCategoryTheorems
normβ‚‚ πŸ“–CompOp
2 mathmath: InnerProductSpace'.normβ‚‚_sq_eq_re_inner, InnerProductSpace'.norm_withLp2_eq_norm2

(root)

Definitions

NameCategoryTheorems
InnerProductSpace' πŸ“–CompDataβ€”
Normβ‚‚ πŸ“–CompDataβ€”
instCoreOfInnerProductSpace' πŸ“–CompOpβ€”
instInnerOfInnerProductSpace' πŸ“–CompOp
53 mathmath: Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_scalarPotential, Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_magneticField, HasVarAdjoint.adjoint, IsTestFunction.inner, ContDiffAt.inner', InnerProductSpace'.fromL2_inner_left, ClassicalMechanics.HarmonicOscillator.hamiltonian_eq, ClassicalMechanics.HarmonicOscillator.kineticEnergy_eq, inner_zero_right', HasAdjoint.smul_right, Continuous.inner', real_inner_self_nonneg', InnerProductSpace'.ofLp_inner_left, HasAdjoint.adjoint_inner_right, HasAdjFDerivAt.inner, inner_sum', inner_neg_left', HasAdjFDerivAt.smul, InnerProductSpace'.toL2_inner_left, inner_sub_right', IsTestFunction.inner_right, inner_zero_left', inner_smul_right', deriv_inner_apply', ContDiff.inner', fderiv_inner_apply', real_inner_comm', inner_add_right', prod_inner_apply', inner_add_left', HasFDerivAt.inner', IsTestFunction.inner_left, ClassicalMechanics.hamiltons_equations_varGradient, inner_self_eq_zero', ClassicalMechanics.HarmonicOscillator.potentialEnergy_deriv, inner_sub_left', ClassicalMechanics.HarmonicOscillator.lagrangian_eq, inner_conj_symm', inner_smul_left', ClassicalMechanics.HarmonicOscillator.kineticEnergy_deriv, ClassicalMechanics.HarmonicOscillator.energy_deriv, InnerProductSpace'.toLp_inner_left, isBoundedBilinearMap_inner', inner_neg_right', ClassicalMechanics.HarmonicOscillator.equationOfMotion_tfae, Electromagnetism.ElectromagneticPotential.constantEB_scalarPotential, HasAdjoint.adjoint_inner_left, adjFDeriv_inner, divergence_smul, ClassicalMechanics.HarmonicOscillator.potentialEnergy_eq, adjFDeriv_smul, DifferentiableAt.inner', ClassicalMechanics.Lagrangian.isTotalTimeDerivativeVelocity
instInnerProd_physLean πŸ“–CompOp
1 mathmath: prod_inner_apply'
instInnerProductSpace' πŸ“–CompOp
31 mathmath: Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_scalarPotential, Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_magneticField, HasVarAdjoint.gradient, ClassicalMechanics.HarmonicOscillator.hamiltonian_eq, ClassicalMechanics.HarmonicOscillator.kineticEnergy_eq, ClassicalMechanics.euler_lagrange_varGradient, HasVarAdjoint.grad, Electromagnetism.ElectromagneticPotential.freeCurrentPotential_hasVarGradientAt, HasVarAdjDerivAt.gradient, HasAdjFDerivAt.inner, gradient_eq_adjFDeriv, Electromagnetism.ElectromagneticPotential.kineticTerm_hasVarGradientAt, Electromagnetism.ElectromagneticPotential.deriv_hasVarAdjDerivAt, ClassicalMechanics.hamiltons_equations_varGradient, HasVarAdjoint.div, ClassicalMechanics.HarmonicOscillator.potentialEnergy_deriv, ClassicalMechanics.HarmonicOscillator.lagrangian_eq, Electromagnetism.ElectromagneticPotential.lagrangian_hasVarGradientAt_eq_add_gradKineticTerm, ClassicalMechanics.HarmonicOscillator.kineticEnergy_deriv, ClassicalMechanics.HarmonicOscillator.energy_deriv, ClassicalMechanics.HarmonicOscillator.equationOfMotion_tfae, Electromagnetism.ElectromagneticPotential.constantEB_scalarPotential, adjFDeriv_inner, divergence_smul, ClassicalMechanics.HarmonicOscillator.potentialEnergy_eq, HasVarAdjDerivAt.grad, Electromagnetism.ElectromagneticPotential.lagrangian_hasVarGradientAt_gradLagrangian, adjFDeriv_smul, HasVarAdjDerivAt.div, Electromagnetism.ElectromagneticPotential.hasVarAdjDerivAt_component, ClassicalMechanics.Lagrangian.isTotalTimeDerivativeVelocity
instInnerProductSpace'Forall πŸ“–CompOpβ€”
instInnerProductSpace'Prod πŸ“–CompOp
14 mathmath: HasVarAdjDerivAt.prod, adjFDeriv_uncurry, adjFDeriv_fst, HasAdjoint.prodMk, adjFDeriv_prod_fst, hasAdjFDerivAt_uncurry, HasAdjFDerivAt.inner, ClassicalMechanics.hamiltons_equations_varGradient, adjFDeriv_prod_snd, ClassicalMechanics.HarmonicOscillator.equationOfMotion_tfae, adjFDeriv_inner, HasVarAdjoint.prod, adjFDeriv_snd, HasAdjFDerivAt.prodMk
Β«termβ€–_β€–β‚‚Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
ext_inner_left' πŸ“–β€”instInnerOfInnerProductSpace'β€”β€”β€”
ext_inner_right' πŸ“–β€”instInnerOfInnerProductSpace'β€”β€”β€”
inner_add_left' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_add_right' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_conj_symm' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_neg_left' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_neg_right' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_self_eq_zero' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_smul_left' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_smul_right' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_sub_left' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_sub_right' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_sum' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”InnerProductSpace'.ofLp_inner_left
inner_zero_left' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
inner_zero_right' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
isBoundedBilinearMap_inner' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”inner_add_left'
inner_smul_left'
inner_add_right'
inner_smul_right'
InnerProductSpace'.inner_top_equiv_norm
InnerProductSpace'.norm_withLp2_eq_norm2
InnerProductSpace'.normβ‚‚_sq_eq_re_inner
prod_inner_apply' πŸ“–mathematicalβ€”instInnerProd_physLean
instInnerOfInnerProductSpace'
β€”β€”
real_inner_comm' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”
real_inner_self_nonneg' πŸ“–mathematicalβ€”instInnerOfInnerProductSpace'β€”β€”

---

← Back to Index