Documentation Verification Report

RatComplexNum

📁 Source: PhysLean/Mathematics/RatComplexNum.lean

Statistics

MetricCount
DefinitionsRatComplexNum, equivToProd, fst, instAdd, instAddCommGroup, instDecidableEq, instMul, instRing, snd, toComplexNum
10
TheoremsI_mul_toComplexNum, add_fst, add_snd, ext, ext_iff, mul_fst, mul_snd, ofNat_mul_toComplexNum, one_fst, one_snd, toComplexNum_injective, zero_fst, zero_snd
13
Total23

PhysLean

Definitions

NameCategoryTheorems
RatComplexNum 📖CompData
34 mathmath: complexLorentzTensor.contrT_ofRat_eq_sum_dropPairSection, RatComplexNum.one_fst, complexLorentzTensor.altLeftLeftUnit_eq_ofRat, PauliMatrix.pauliCoDown_eq_ofRat, RatComplexNum.add_fst, complexLorentzTensor.altLeftMetric_eq_ofRat, complexLorentzTensor.ofRat_basis_repr_apply, RatComplexNum.mul_fst, complexLorentzTensor.permT_ofRat, RatComplexNum.I_mul_toComplexNum, complexLorentzTensor.coContrUnit_eq_ofRat, RatComplexNum.toComplexNum_injective, complexLorentzTensor.altRightMetric_eq_ofRat, PauliMatrix.pauliContrDown_ofRat, complexLorentzTensor.leftAltLeftUnit_eq_ofRat, complexLorentzTensor.altRightRightUnit_eq_ofRat, complexLorentzTensor.coMetric_eq_ofRat, complexLorentzTensor.basis_eq_ofRat, complexLorentzTensor.contrCoUnit_eq_ofRat, complexLorentzTensor.rightMetric_eq_ofRat, RatComplexNum.ofNat_mul_toComplexNum, complexLorentzTensor.rightAltRightUnit_eq_ofRat, complexLorentzTensor.contrT_ofRat, RatComplexNum.add_snd, RatComplexNum.mul_snd, complexLorentzTensor.leftMetric_eq_ofRat, RatComplexNum.zero_snd, complexLorentzTensor.contrMetric_eq_ofRat, complexLorentzTensor.prodT_ofRat_ofRat, RatComplexNum.zero_fst, PauliMatrix.toTensor_eq_ofRat, complexLorentzTensor.contr_basis_ratComplexNum, PauliMatrix.pauliCo_eq_ofRat, RatComplexNum.one_snd

PhysLean.RatComplexNum

Definitions

NameCategoryTheorems
equivToProd 📖CompOp
fst 📖CompOp
6 mathmath: one_fst, add_fst, mul_fst, ext_iff, mul_snd, zero_fst
instAdd 📖CompOp
2 mathmath: add_fst, add_snd
instAddCommGroup 📖CompOp
6 mathmath: complexLorentzTensor.altLeftMetric_eq_ofRat, complexLorentzTensor.altRightMetric_eq_ofRat, complexLorentzTensor.coMetric_eq_ofRat, complexLorentzTensor.rightMetric_eq_ofRat, complexLorentzTensor.leftMetric_eq_ofRat, complexLorentzTensor.contrMetric_eq_ofRat
instDecidableEq 📖CompOp
instMul 📖CompOp
6 mathmath: complexLorentzTensor.contrT_ofRat_eq_sum_dropPairSection, mul_fst, I_mul_toComplexNum, ofNat_mul_toComplexNum, mul_snd, complexLorentzTensor.prodT_ofRat_ofRat
instRing 📖CompOp
30 mathmath: complexLorentzTensor.contrT_ofRat_eq_sum_dropPairSection, one_fst, complexLorentzTensor.altLeftLeftUnit_eq_ofRat, PauliMatrix.pauliCoDown_eq_ofRat, complexLorentzTensor.altLeftMetric_eq_ofRat, complexLorentzTensor.ofRat_basis_repr_apply, complexLorentzTensor.permT_ofRat, I_mul_toComplexNum, complexLorentzTensor.coContrUnit_eq_ofRat, toComplexNum_injective, complexLorentzTensor.altRightMetric_eq_ofRat, PauliMatrix.pauliContrDown_ofRat, complexLorentzTensor.leftAltLeftUnit_eq_ofRat, complexLorentzTensor.altRightRightUnit_eq_ofRat, complexLorentzTensor.coMetric_eq_ofRat, complexLorentzTensor.basis_eq_ofRat, complexLorentzTensor.contrCoUnit_eq_ofRat, complexLorentzTensor.rightMetric_eq_ofRat, ofNat_mul_toComplexNum, complexLorentzTensor.rightAltRightUnit_eq_ofRat, complexLorentzTensor.contrT_ofRat, complexLorentzTensor.leftMetric_eq_ofRat, zero_snd, complexLorentzTensor.contrMetric_eq_ofRat, complexLorentzTensor.prodT_ofRat_ofRat, zero_fst, PauliMatrix.toTensor_eq_ofRat, complexLorentzTensor.contr_basis_ratComplexNum, PauliMatrix.pauliCo_eq_ofRat, one_snd
snd 📖CompOp
6 mathmath: mul_fst, ext_iff, add_snd, mul_snd, zero_snd, one_snd
toComplexNum 📖CompOp
26 mathmath: complexLorentzTensor.contrT_ofRat_eq_sum_dropPairSection, complexLorentzTensor.altLeftLeftUnit_eq_ofRat, PauliMatrix.pauliCoDown_eq_ofRat, complexLorentzTensor.altLeftMetric_eq_ofRat, complexLorentzTensor.ofRat_basis_repr_apply, complexLorentzTensor.permT_ofRat, I_mul_toComplexNum, complexLorentzTensor.coContrUnit_eq_ofRat, toComplexNum_injective, complexLorentzTensor.altRightMetric_eq_ofRat, PauliMatrix.pauliContrDown_ofRat, complexLorentzTensor.leftAltLeftUnit_eq_ofRat, complexLorentzTensor.altRightRightUnit_eq_ofRat, complexLorentzTensor.coMetric_eq_ofRat, complexLorentzTensor.basis_eq_ofRat, complexLorentzTensor.contrCoUnit_eq_ofRat, complexLorentzTensor.rightMetric_eq_ofRat, ofNat_mul_toComplexNum, complexLorentzTensor.rightAltRightUnit_eq_ofRat, complexLorentzTensor.contrT_ofRat, complexLorentzTensor.leftMetric_eq_ofRat, complexLorentzTensor.contrMetric_eq_ofRat, complexLorentzTensor.prodT_ofRat_ofRat, PauliMatrix.toTensor_eq_ofRat, complexLorentzTensor.contr_basis_ratComplexNum, PauliMatrix.pauliCo_eq_ofRat

Theorems

NameKindAssumesProvesValidatesDepends On
I_mul_toComplexNum 📖mathematicalPhysLean.RatComplexNum
instRing
toComplexNum
instMul
add_fst 📖mathematicalfst
PhysLean.RatComplexNum
instAdd
add_snd 📖mathematicalsnd
PhysLean.RatComplexNum
instAdd
ext 📖fst
snd
ext_iff 📖mathematicalfst
snd
ext
mul_fst 📖mathematicalfst
PhysLean.RatComplexNum
instMul
snd
mul_snd 📖mathematicalsnd
PhysLean.RatComplexNum
instMul
fst
ofNat_mul_toComplexNum 📖mathematicalPhysLean.RatComplexNum
instRing
toComplexNum
instMul
one_fst 📖mathematicalfst
PhysLean.RatComplexNum
instRing
one_snd 📖mathematicalsnd
PhysLean.RatComplexNum
instRing
toComplexNum_injective 📖mathematicalPhysLean.RatComplexNum
instRing
toComplexNum
ext
zero_fst 📖mathematicalfst
PhysLean.RatComplexNum
instRing
zero_snd 📖mathematicalsnd
PhysLean.RatComplexNum
instRing

---

← Back to Index