Documentation Verification Report

Basic

πŸ“ Source: PhysLean/Particles/FlavorPhysics/CKMMatrix/Basic.lean

Statistics

MetricCount
DefinitionsCKMMatrix, Rcdcb, Rcscb, Rubud, Rubus, Rudus, Rusud, cb_element, cd_cb_ratio, cd_element, cs_cb_ratio, cs_element, tb_element, td_element, ts_element, ub_element, ub_ud_ratio, ub_us_ratio, ud_element, ud_us_ratio, us_element, us_ud_ratio, CKMMatrixSetoid, PhaseShiftRelation, VAbs, VAbs', VcbAbs, VcdAbs, VcsAbs, VtbAbs, VtdAbs, VtsAbs, VubAbs, VudAbs, VusAbs, phaseShift, phaseShiftApply, phaseShiftMatrix
38
TheoremsRcdcb_mul_cb, Rcscb_mul_cb, CKMMatrix_ext, VAbs'_equiv, cb, cd, cs, equiv, tb, td, ts, ub, ud, us, phaseShiftApply_coe, phaseShiftMatrix_mul, phaseShiftMatrix_one, phaseShiftMatrix_star, phaseShiftRelation_equiv, phaseShiftRelation_refl, phaseShiftRelation_symm, phaseShiftRelation_trans, phaseShift_coe, phaseShift_coe_matrix
24
Total62

CKMMatrix

Definitions

NameCategoryTheorems
Rcdcb πŸ“–CompOp
1 mathmath: Rcdcb_mul_cb
Rcscb πŸ“–CompOp
1 mathmath: Rcscb_mul_cb
Rubud πŸ“–CompOpβ€”
Rubus πŸ“–CompOpβ€”
Rudus πŸ“–CompOpβ€”
Rusud πŸ“–CompOpβ€”
cb_element πŸ“–CompOpβ€”
cd_cb_ratio πŸ“–CompOpβ€”
cd_element πŸ“–CompOpβ€”
cs_cb_ratio πŸ“–CompOpβ€”
cs_element πŸ“–CompOpβ€”
tb_element πŸ“–CompOpβ€”
td_element πŸ“–CompOpβ€”
ts_element πŸ“–CompOpβ€”
ub_element πŸ“–CompOpβ€”
ub_ud_ratio πŸ“–CompOpβ€”
ub_us_ratio πŸ“–CompOpβ€”
ud_element πŸ“–CompOpβ€”
ud_us_ratio πŸ“–CompOpβ€”
us_element πŸ“–CompOpβ€”
us_ud_ratio πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
Rcdcb_mul_cb πŸ“–mathematicalβ€”Rcdcbβ€”Rcdcb.eq_1
Rcscb_mul_cb πŸ“–mathematicalβ€”Rcscbβ€”Rcscb.eq_1

(root)

Definitions

NameCategoryTheorems
CKMMatrix πŸ“–CompOp
25 mathmath: CKMMatrix.ubOnePhaseCond_hold_up_to_equiv_of_ub_one, CKMMatrix.cd_of_fstRowThdColRealCond, standParam.mulExpδ₁₃_on_param_abs, CKMMatrix.shift_ub_phase_zero, Vs_zero_iff_cos_sin_zero, standParam.mulExpδ₁₃_on_param_neq_zero_arg, CKMMatrix.cs_of_fstRowThdColRealCond, CKMMatrix.shift_ud_phase_zero, CKMMatrix.shift_us_phase_zero, standParam.VusVubVcdSq_eq, standParam.exists_for_CKMatrix, standParam.mulExpδ₁₃_eq, CKMMatrix.shift_cd_phase_pi, standParam.mulExpδ₁₃_on_param_eq_zero_iff, standParam.eq_standardParameterization_δ₃, CKMMatrix.shift_tb_phase_zero, standParam.eq_standParam_of_fstRowThdColRealCond, standParam.eq_standParam_of_ubOnePhaseCond, CKMMatrix.fstRowThdColRealCond_holds_up_to_equiv, CKMMatrix.cs_of_ud_us_zero, CKMMatrix.shift_cs_phase_zero, phaseShiftApply.equiv, standParam.exists_δ₁₃, CKMMatrix.shift_cb_phase_zero, standParam.mulExpδ₁₃_on_param_δ₁₃
CKMMatrixSetoid πŸ“–CompOp
25 mathmath: CKMMatrix.ubOnePhaseCond_hold_up_to_equiv_of_ub_one, CKMMatrix.cd_of_fstRowThdColRealCond, standParam.mulExpδ₁₃_on_param_abs, CKMMatrix.shift_ub_phase_zero, Vs_zero_iff_cos_sin_zero, standParam.mulExpδ₁₃_on_param_neq_zero_arg, CKMMatrix.cs_of_fstRowThdColRealCond, CKMMatrix.shift_ud_phase_zero, CKMMatrix.shift_us_phase_zero, standParam.VusVubVcdSq_eq, standParam.exists_for_CKMatrix, standParam.mulExpδ₁₃_eq, CKMMatrix.shift_cd_phase_pi, standParam.mulExpδ₁₃_on_param_eq_zero_iff, standParam.eq_standardParameterization_δ₃, CKMMatrix.shift_tb_phase_zero, standParam.eq_standParam_of_fstRowThdColRealCond, standParam.eq_standParam_of_ubOnePhaseCond, CKMMatrix.fstRowThdColRealCond_holds_up_to_equiv, CKMMatrix.cs_of_ud_us_zero, CKMMatrix.shift_cs_phase_zero, phaseShiftApply.equiv, standParam.exists_δ₁₃, CKMMatrix.shift_cb_phase_zero, standParam.mulExpδ₁₃_on_param_δ₁₃
PhaseShiftRelation πŸ“–MathDef
2 mathmath: phaseShiftRelation_refl, phaseShiftRelation_equiv
VAbs πŸ“–CompOp
4 mathmath: CKMMatrix.VAbs_sum_sq_row_eq_one, CKMMatrix.VAbs_leq_one, CKMMatrix.VAbs_ge_zero, CKMMatrix.VAbs_sum_sq_col_eq_one
VAbs' πŸ“–CompOp
1 mathmath: VAbs'_equiv
VcbAbs πŸ“–CompOp
8 mathmath: CKMMatrix.cd_of_fstRowThdColRealCond, Vs_zero_iff_cos_sin_zero, CKMMatrix.cs_of_fstRowThdColRealCond, CKMMatrix.VcbAbs_sq_add_VtbAbs_sq, VcbAbs_eq_S₂₃_mul_C₁₃, standParam.mulExpδ₁₃_on_param_eq_zero_iff, CKMMatrix.shift_cb_phase_zero, S₂₃_of_Vub_neq_one
VcdAbs πŸ“–CompOp
3 mathmath: CKMMatrix.shift_cd_phase_pi, CKMMatrix.cs_of_ud_us_zero, S₂₃_of_Vub_eq_one
VcsAbs πŸ“–CompOp
2 mathmath: CKMMatrix.cs_of_ud_us_zero, CKMMatrix.shift_cs_phase_zero
VtbAbs πŸ“–CompOp
8 mathmath: CKMMatrix.cd_of_fstRowThdColRealCond, Vs_zero_iff_cos_sin_zero, CKMMatrix.cs_of_fstRowThdColRealCond, VtbAbs_eq_C₂₃_mul_C₁₃, CKMMatrix.VcbAbs_sq_add_VtbAbs_sq, C₂₃_of_Vub_neq_one, standParam.mulExpδ₁₃_on_param_eq_zero_iff, CKMMatrix.shift_tb_phase_zero
VtdAbs πŸ“–CompOpβ€”
VtsAbs πŸ“–CompOpβ€”
VubAbs πŸ“–CompOp
9 mathmath: CKMMatrix.cd_of_fstRowThdColRealCond, CKMMatrix.shift_ub_phase_zero, Vs_zero_iff_cos_sin_zero, CKMMatrix.cs_of_fstRowThdColRealCond, VubAbs_eq_S₁₃, CKMMatrix.VcbAbs_sq_add_VtbAbs_sq, standParam.mulExpδ₁₃_on_param_eq_zero_iff, CKMMatrix.VudAbs_sq_add_VusAbs_sq, VubAbs_of_cos_θ₁₃_zero
VudAbs πŸ“–CompOp
11 mathmath: C₁₃_eq_add_sq, CKMMatrix.cd_of_fstRowThdColRealCond, Vs_zero_iff_cos_sin_zero, CKMMatrix.cs_of_fstRowThdColRealCond, CKMMatrix.shift_ud_phase_zero, C₂₃_of_Vub_neq_one, VudAbs_eq_C₁₂_mul_C₁₃, standParam.mulExpδ₁₃_on_param_eq_zero_iff, CKMMatrix.VudAbs_sq_add_VusAbs_sq, C₁₂_eq_Vud_div_sqrt, S₂₃_of_Vub_neq_one
VusAbs πŸ“–CompOp
11 mathmath: C₁₃_eq_add_sq, CKMMatrix.cd_of_fstRowThdColRealCond, Vs_zero_iff_cos_sin_zero, CKMMatrix.cs_of_fstRowThdColRealCond, CKMMatrix.shift_us_phase_zero, C₂₃_of_Vub_neq_one, standParam.mulExpδ₁₃_on_param_eq_zero_iff, CKMMatrix.VudAbs_sq_add_VusAbs_sq, C₁₂_eq_Vud_div_sqrt, VusAbs_eq_S₁₂_mul_C₁₃, S₂₃_of_Vub_neq_one
phaseShift πŸ“–CompOp
2 mathmath: phaseShift_coe, phaseShift_coe_matrix
phaseShiftApply πŸ“–CompOp
22 mathmath: phaseShiftApply.td, CKMMatrix.shift_ub_phase_zero, phaseShiftApply.uRow_mul, CKMMatrix.shift_ud_phase_zero, CKMMatrix.shift_us_phase_zero, phaseShiftApply.cRow_mul, phaseShiftApply.us, phaseShiftApply.cs, phaseShiftApply.ub, phaseShiftApply.ts, CKMMatrix.shift_cd_phase_pi, phaseShiftApply_coe, phaseShiftApply.tb, phaseShiftApply.cb, CKMMatrix.shift_tb_phase_zero, phaseShiftApply.tRow_mul, CKMMatrix.shift_cross_product_phase_zero, phaseShiftApply.ud, CKMMatrix.shift_cs_phase_zero, phaseShiftApply.equiv, CKMMatrix.shift_cb_phase_zero, phaseShiftApply.cd
phaseShiftMatrix πŸ“–CompOp
4 mathmath: phaseShiftMatrix_one, phaseShiftMatrix_star, phaseShiftMatrix_mul, phaseShift_coe_matrix

Theorems

NameKindAssumesProvesValidatesDepends On
CKMMatrix_ext πŸ“–β€”β€”β€”β€”β€”
VAbs'_equiv πŸ“–mathematicalCKMMatrix
CKMMatrixSetoid
VAbs'β€”β€”
phaseShiftApply_coe πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
phaseShiftMatrix_mul πŸ“–mathematicalβ€”phaseShiftMatrixβ€”β€”
phaseShiftMatrix_one πŸ“–mathematicalβ€”phaseShiftMatrixβ€”β€”
phaseShiftMatrix_star πŸ“–mathematicalβ€”phaseShiftMatrixβ€”β€”
phaseShiftRelation_equiv πŸ“–mathematicalβ€”PhaseShiftRelationβ€”phaseShiftRelation_refl
phaseShiftRelation_symm
phaseShiftRelation_trans
phaseShiftRelation_refl πŸ“–mathematicalβ€”PhaseShiftRelationβ€”phaseShiftMatrix_one
phaseShiftRelation_symm πŸ“–β€”PhaseShiftRelationβ€”β€”phaseShiftMatrix_mul
phaseShiftMatrix_one
phaseShiftRelation_trans πŸ“–β€”PhaseShiftRelationβ€”β€”phaseShiftMatrix_mul
phaseShift_coe πŸ“–mathematicalβ€”phaseShiftβ€”β€”
phaseShift_coe_matrix πŸ“–mathematicalβ€”phaseShift
phaseShiftMatrix
β€”β€”

phaseShiftApply

Theorems

NameKindAssumesProvesValidatesDepends On
cb πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
cd πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
cs πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
equiv πŸ“–mathematicalβ€”CKMMatrix
CKMMatrixSetoid
phaseShiftApply
β€”β€”
tb πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
td πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
ts πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
ub πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
ud πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”
us πŸ“–mathematicalβ€”phaseShiftApplyβ€”β€”

---

← Back to Index