Documentation Verification Report

StandardParameters

πŸ“ Source: PhysLean/Particles/FlavorPhysics/CKMMatrix/StandardParameterization/StandardParameters.lean

Statistics

MetricCount
DefinitionsC₁₂, C₁₃, C₂₃, S₁₂, S₁₃, S₂₃, δ₁₃, θ₁₂, θ₁₃, θ₂₃
10
TheoremsC₁₂_eq_Vud_div_sqrt, C₁₂_eq_β„‚cos_θ₁₂, C₁₂_of_Vub_one, C₁₃_eq_add_sq, C₁₃_eq_β„‚cos_θ₁₃, C₁₃_of_Vub_eq_one, C₂₃_eq_β„‚cos_θ₂₃, C₂₃_of_Vub_neq_one, S₁₂_eq_sin_θ₁₂, S₁₂_eq_β„‚sin_θ₁₂, S₁₂_leq_one, S₁₂_nonneg, S₁₂_of_Vub_one, S₁₂_sq_add_C₁₂_sq, S₁₃_eq_sin_θ₁₃, S₁₃_eq_β„‚sin_θ₁₃, S₁₃_leq_one, S₁₃_nonneg, S₁₃_of_Vub_one, S₁₃_sq_add_C₁₃_sq, S₂₃_eq_sin_θ₂₃, S₂₃_eq_β„‚sin_θ₂₃, S₂₃_leq_one, S₂₃_nonneg, S₂₃_of_Vub_eq_one, S₂₃_of_Vub_neq_one, S₂₃_sq_add_C₂₃_sq, VcbAbs_eq_S₂₃_mul_C₁₃, Vs_zero_iff_cos_sin_zero, VtbAbs_eq_C₂₃_mul_C₁₃, VubAbs_eq_S₁₃, VubAbs_of_cos_θ₁₃_zero, VudAbs_eq_C₁₂_mul_C₁₃, VusAbs_eq_S₁₂_mul_C₁₃, complexAbs_cos_θ₁₂, complexAbs_cos_θ₁₃, complexAbs_cos_θ₂₃, complexAbs_sin_θ₁₂, complexAbs_sin_θ₁₃, complexAbs_sin_θ₂₃, eq_standParam_of_fstRowThdColRealCond, eq_standParam_of_ubOnePhaseCond, eq_standardParameterization_δ₃, exists_for_CKMatrix, exists_δ₁₃, mulExpδ₁₃_on_param_abs, mulExpδ₁₃_on_param_eq_zero_iff, mulExpδ₁₃_on_param_neq_zero_arg, mulExpδ₁₃_on_param_δ₁₃, on_param_cos_θ₁₂_eq_zero, on_param_cos_θ₁₃_eq_zero, on_param_cos_θ₂₃_eq_zero, on_param_sin_θ₁₂_eq_zero, on_param_sin_θ₁₃_eq_zero, on_param_sin_θ₂₃_eq_zero
55
Total65

(root)

Definitions

NameCategoryTheorems
C₁₂ πŸ“–CompOp
5 mathmath: C₁₂_of_Vub_one, C₁₂_eq_β„‚cos_θ₁₂, VudAbs_eq_C₁₂_mul_C₁₃, S₁₂_sq_add_C₁₂_sq, C₁₂_eq_Vud_div_sqrt
C₁₃ πŸ“–CompOp
8 mathmath: C₁₃_eq_add_sq, VtbAbs_eq_C₂₃_mul_C₁₃, VcbAbs_eq_S₂₃_mul_C₁₃, VudAbs_eq_C₁₂_mul_C₁₃, C₁₃_eq_β„‚cos_θ₁₃, S₁₃_sq_add_C₁₃_sq, C₁₃_of_Vub_eq_one, VusAbs_eq_S₁₂_mul_C₁₃
C₂₃ πŸ“–CompOp
4 mathmath: VtbAbs_eq_C₂₃_mul_C₁₃, C₂₃_eq_β„‚cos_θ₂₃, C₂₃_of_Vub_neq_one, S₂₃_sq_add_C₂₃_sq
S₁₂ πŸ“–CompOp
7 mathmath: S₁₂_eq_sin_θ₁₂, S₁₂_of_Vub_one, S₁₂_leq_one, S₁₂_nonneg, S₁₂_sq_add_C₁₂_sq, VusAbs_eq_S₁₂_mul_C₁₃, S₁₂_eq_β„‚sin_θ₁₂
S₁₃ πŸ“–CompOp
7 mathmath: S₁₃_nonneg, S₁₃_of_Vub_one, VubAbs_eq_S₁₃, S₁₃_sq_add_C₁₃_sq, S₁₃_leq_one, S₁₃_eq_β„‚sin_θ₁₃, S₁₃_eq_sin_θ₁₃
S₂₃ πŸ“–CompOp
8 mathmath: S₂₃_eq_β„‚sin_θ₂₃, S₂₃_nonneg, VcbAbs_eq_S₂₃_mul_C₁₃, S₂₃_sq_add_C₂₃_sq, S₂₃_leq_one, S₂₃_eq_sin_θ₂₃, S₂₃_of_Vub_eq_one, S₂₃_of_Vub_neq_one
δ₁₃ πŸ“–CompOp
1 mathmath: standParam.eq_standardParameterization_δ₃
θ₁₂ πŸ“–CompOp
18 mathmath: complexAbs_sin_θ₁₂, C₁₂_eq_β„‚cos_θ₁₂, standParam.mulExpδ₁₃_on_param_abs, S₁₂_eq_sin_θ₁₂, Vs_zero_iff_cos_sin_zero, standParam.mulExpδ₁₃_on_param_neq_zero_arg, standParam.on_param_cos_θ₂₃_eq_zero, standParam.on_param_sin_θ₁₃_eq_zero, standParam.mulExpδ₁₃_on_param_eq_zero_iff, complexAbs_cos_θ₁₂, standParam.eq_standardParameterization_δ₃, standParam.on_param_cos_θ₁₃_eq_zero, standParam.eq_standParam_of_fstRowThdColRealCond, standParam.eq_standParam_of_ubOnePhaseCond, S₁₂_eq_β„‚sin_θ₁₂, standParam.exists_δ₁₃, standParam.mulExpδ₁₃_on_param_δ₁₃, standParam.on_param_sin_θ₂₃_eq_zero
θ₁₃ πŸ“–CompOp
18 mathmath: standParam.mulExpδ₁₃_on_param_abs, standParam.on_param_sin_θ₁₂_eq_zero, Vs_zero_iff_cos_sin_zero, standParam.mulExpδ₁₃_on_param_neq_zero_arg, standParam.on_param_cos_θ₁₂_eq_zero, standParam.on_param_cos_θ₂₃_eq_zero, complexAbs_sin_θ₁₃, standParam.mulExpδ₁₃_on_param_eq_zero_iff, C₁₃_eq_β„‚cos_θ₁₃, standParam.eq_standardParameterization_δ₃, standParam.eq_standParam_of_fstRowThdColRealCond, standParam.eq_standParam_of_ubOnePhaseCond, S₁₃_eq_β„‚sin_θ₁₃, S₁₃_eq_sin_θ₁₃, standParam.exists_δ₁₃, complexAbs_cos_θ₁₃, standParam.mulExpδ₁₃_on_param_δ₁₃, standParam.on_param_sin_θ₂₃_eq_zero
θ₂₃ πŸ“–CompOp
18 mathmath: standParam.mulExpδ₁₃_on_param_abs, standParam.on_param_sin_θ₁₂_eq_zero, Vs_zero_iff_cos_sin_zero, standParam.mulExpδ₁₃_on_param_neq_zero_arg, S₂₃_eq_β„‚sin_θ₂₃, standParam.on_param_cos_θ₁₂_eq_zero, C₂₃_eq_β„‚cos_θ₂₃, complexAbs_sin_θ₂₃, complexAbs_cos_θ₂₃, standParam.on_param_sin_θ₁₃_eq_zero, standParam.mulExpδ₁₃_on_param_eq_zero_iff, standParam.eq_standardParameterization_δ₃, standParam.on_param_cos_θ₁₃_eq_zero, standParam.eq_standParam_of_fstRowThdColRealCond, standParam.eq_standParam_of_ubOnePhaseCond, standParam.exists_δ₁₃, S₂₃_eq_sin_θ₂₃, standParam.mulExpδ₁₃_on_param_δ₁₃

Theorems

NameKindAssumesProvesValidatesDepends On
C₁₂_eq_Vud_div_sqrt πŸ“–mathematicalβ€”C₁₂
VudAbs
VusAbs
β€”C₁₂.eq_1
θ₁₂.eq_1
S₁₂.eq_1
CKMMatrix.VAbsub_neq_zero_Vud_Vus_neq_zero
CKMMatrix.VAbs_ge_zero
C₁₂_eq_β„‚cos_θ₁₂ πŸ“–mathematical—θ₁₂
C₁₂
β€”β€”
C₁₂_of_Vub_one πŸ“–mathematicalVubAbsC₁₂—C₁₂.eq_1
θ₁₂.eq_1
S₁₂_of_Vub_one
C₁₃_eq_add_sq πŸ“–mathematicalβ€”C₁₃
VudAbs
VusAbs
β€”C₁₃.eq_1
θ₁₃.eq_1
S₁₃.eq_1
CKMMatrix.VAbs_sum_sq_row_eq_one
C₁₃_eq_β„‚cos_θ₁₃ πŸ“–mathematical—θ₁₃
C₁₃
β€”β€”
C₁₃_of_Vub_eq_one πŸ“–mathematicalVubAbsC₁₃—C₁₃.eq_1
θ₁₃.eq_1
S₁₃.eq_1
C₂₃_eq_β„‚cos_θ₂₃ πŸ“–mathematical—θ₂₃
C₂₃
β€”β€”
C₂₃_of_Vub_neq_one πŸ“–mathematicalβ€”C₂₃
VtbAbs
VudAbs
VusAbs
β€”C₂₃.eq_1
θ₂₃.eq_1
S₂₃_of_Vub_neq_one
CKMMatrix.VudAbs_sq_add_VusAbs_sq
CKMMatrix.VcbAbs_sq_add_VtbAbs_sq
CKMMatrix.VAbsub_neq_zero_Vud_Vus_neq_zero
CKMMatrix.VAbs_ge_zero
S₁₂_eq_sin_θ₁₂ πŸ“–mathematical—θ₁₂
S₁₂
β€”S₁₂_nonneg
S₁₂_leq_one
S₁₂_eq_β„‚sin_θ₁₂ πŸ“–mathematical—θ₁₂
S₁₂
β€”S₁₂_eq_sin_θ₁₂
S₁₂_leq_one πŸ“–mathematicalβ€”S₁₂—S₁₂.eq_1
CKMMatrix.VAbs_ge_zero
S₁₂_nonneg πŸ“–mathematicalβ€”S₁₂—S₁₂.eq_1
CKMMatrix.VAbs_ge_zero
S₁₂_of_Vub_one πŸ“–mathematicalVubAbsS₁₂—CKMMatrix.VAbs_sum_sq_row_eq_one
S₁₂_sq_add_C₁₂_sq πŸ“–mathematicalβ€”S₁₂
C₁₂
β€”S₁₂_eq_sin_θ₁₂
C₁₂.eq_1
S₁₃_eq_sin_θ₁₃ πŸ“–mathematical—θ₁₃
S₁₃
β€”S₁₃_nonneg
S₁₃_leq_one
S₁₃_eq_β„‚sin_θ₁₃ πŸ“–mathematical—θ₁₃
S₁₃
β€”S₁₃_eq_sin_θ₁₃
S₁₃_leq_one πŸ“–mathematicalβ€”S₁₃—CKMMatrix.VAbs_leq_one
S₁₃_nonneg πŸ“–mathematicalβ€”S₁₃—CKMMatrix.VAbs_ge_zero
S₁₃_of_Vub_one πŸ“–mathematicalVubAbsS₁₃—S₁₃.eq_1
S₁₃_sq_add_C₁₃_sq πŸ“–mathematicalβ€”S₁₃
C₁₃
β€”S₁₃_eq_sin_θ₁₃
C₁₃.eq_1
S₂₃_eq_sin_θ₂₃ πŸ“–mathematical—θ₂₃
S₂₃
β€”S₂₃_nonneg
S₂₃_leq_one
S₂₃_eq_β„‚sin_θ₂₃ πŸ“–mathematical—θ₂₃
S₂₃
β€”S₂₃_eq_sin_θ₂₃
S₂₃_leq_one πŸ“–mathematicalβ€”S₂₃—S₂₃.eq_1
CKMMatrix.VAbs_leq_one
CKMMatrix.VAbs_ge_zero
CKMMatrix.VudAbs_sq_add_VusAbs_sq
CKMMatrix.VcbAbs_sq_add_VtbAbs_sq
S₂₃_nonneg πŸ“–mathematicalβ€”S₂₃—S₂₃.eq_1
CKMMatrix.VAbs_ge_zero
S₂₃_of_Vub_eq_one πŸ“–mathematicalVubAbsS₂₃
VcdAbs
β€”S₂₃.eq_1
S₂₃_of_Vub_neq_one πŸ“–mathematicalβ€”S₂₃
VcbAbs
VudAbs
VusAbs
β€”S₂₃.eq_1
S₂₃_sq_add_C₂₃_sq πŸ“–mathematicalβ€”S₂₃
C₂₃
β€”S₂₃_eq_sin_θ₂₃
C₂₃.eq_1
VcbAbs_eq_S₂₃_mul_C₁₃ πŸ“–mathematicalβ€”VcbAbs
S₂₃
C₁₃
β€”C₁₃_of_Vub_eq_one
CKMMatrix.VAbs_fst_col_eq_one_snd_eq_zero
S₂₃_of_Vub_neq_one
C₁₃_eq_add_sq
CKMMatrix.VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero
Vs_zero_iff_cos_sin_zero πŸ“–mathematicalβ€”VudAbs
CKMMatrix
CKMMatrixSetoid
VubAbs
VusAbs
VcbAbs
VtbAbs
θ₁₂
θ₁₃
θ₂₃
β€”VudAbs_eq_C₁₂_mul_C₁₃
VubAbs_eq_S₁₃
VusAbs_eq_S₁₂_mul_C₁₃
VcbAbs_eq_S₂₃_mul_C₁₃
VtbAbs_eq_C₂₃_mul_C₁₃
C₁₂.eq_1
C₁₃.eq_1
C₂₃.eq_1
S₁₂_eq_sin_θ₁₂
S₂₃_eq_sin_θ₂₃
S₁₃_eq_sin_θ₁₃
VtbAbs_eq_C₂₃_mul_C₁₃ πŸ“–mathematicalβ€”VtbAbs
C₂₃
C₁₃
β€”C₁₃_of_Vub_eq_one
CKMMatrix.VAbs_fst_col_eq_one_thd_eq_zero
C₂₃_of_Vub_neq_one
C₁₃_eq_add_sq
CKMMatrix.VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero
VubAbs_eq_S₁₃ πŸ“–mathematicalβ€”VubAbs
S₁₃
β€”β€”
VubAbs_of_cos_θ₁₃_zero πŸ“–mathematicalθ₁₃VubAbsβ€”CKMMatrix.VAbs_ge_zero
CKMMatrix.VAbs_leq_one
VubAbs_eq_S₁₃
θ₁₃.eq_1
VudAbs_eq_C₁₂_mul_C₁₃ πŸ“–mathematicalβ€”VudAbs
C₁₂
C₁₃
β€”CKMMatrix.VAbs_thd_eq_one_fst_eq_zero
C₁₃.eq_1
θ₁₃.eq_1
S₁₃.eq_1
C₁₂_eq_Vud_div_sqrt
CKMMatrix.VAbs_sum_sq_row_eq_one
CKMMatrix.VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero
VusAbs_eq_S₁₂_mul_C₁₃ πŸ“–mathematicalβ€”VusAbs
S₁₂
C₁₃
β€”C₁₃.eq_1
θ₁₃.eq_1
S₁₂.eq_1
S₁₃.eq_1
CKMMatrix.VAbs_sum_sq_row_eq_one
CKMMatrix.VAbs_thd_eq_one_snd_eq_zero
CKMMatrix.VAbsub_neq_zero_sqrt_Vud_Vus_neq_zero
complexAbs_cos_θ₁₂ πŸ“–mathematical—θ₁₂—C₁₂_eq_β„‚cos_θ₁₂
complexAbs_cos_θ₁₃ πŸ“–mathematical—θ₁₃—C₁₃_eq_β„‚cos_θ₁₃
complexAbs_cos_θ₂₃ πŸ“–mathematical—θ₂₃—C₂₃_eq_β„‚cos_θ₂₃
complexAbs_sin_θ₁₂ πŸ“–mathematical—θ₁₂—S₁₂_eq_β„‚sin_θ₁₂
S₁₂_nonneg
complexAbs_sin_θ₁₃ πŸ“–mathematical—θ₁₃—S₁₃_eq_β„‚sin_θ₁₃
S₁₃_nonneg
complexAbs_sin_θ₂₃ πŸ“–mathematical—θ₂₃—S₂₃_eq_β„‚sin_θ₂₃
S₂₃_nonneg

standParam

Theorems

NameKindAssumesProvesValidatesDepends On
eq_standParam_of_fstRowThdColRealCond πŸ“–mathematicalCKMMatrix.FstRowThdColRealCondstandParam
θ₁₂
CKMMatrix
CKMMatrixSetoid
θ₁₃
θ₂₃
β€”CKMMatrix.ud_us_neq_zero_iff_ub_neq_one
CKMMatrix.Vabs_sq_add_neq_zero
eq_rows
VudAbs_eq_C₁₂_mul_C₁₃
VusAbs_eq_S₁₂_mul_C₁₃
S₁₂_eq_sin_θ₁₂
C₁₃.eq_1
VubAbs_eq_S₁₃
S₁₃_eq_sin_θ₁₃
CKMMatrix.cd_of_fstRowThdColRealCond
S₁₂_eq_β„‚sin_θ₁₂
S₁₂.eq_1
C₁₂_eq_β„‚cos_θ₁₂
C₁₂_eq_Vud_div_sqrt
S₂₃_eq_β„‚sin_θ₂₃
S₂₃_of_Vub_neq_one
C₂₃_eq_β„‚cos_θ₂₃
C₂₃_of_Vub_neq_one
S₁₃_eq_β„‚sin_θ₁₃
S₁₃.eq_1
CKMMatrix.cs_of_fstRowThdColRealCond
VcbAbs_eq_S₂₃_mul_C₁₃
eq_standParam_of_ubOnePhaseCond πŸ“–mathematicalCKMMatrix.ubOnePhaseCondstandParam
θ₁₂
CKMMatrix
CKMMatrixSetoid
θ₁₃
θ₂₃
β€”eq_rows
C₁₃_eq_β„‚cos_θ₁₃
C₁₃_of_Vub_eq_one
S₁₃_eq_β„‚sin_θ₁₃
S₁₃.eq_1
S₂₃_eq_β„‚sin_θ₂₃
S₂₃_of_Vub_eq_one
S₁₂_eq_β„‚sin_θ₁₂
S₁₂_of_Vub_one
C₁₂_eq_β„‚cos_θ₁₂
C₁₂_of_Vub_one
S₁₃_of_Vub_one
θ₂₃.eq_1
eq_standardParameterization_δ₃ πŸ“–mathematicalβ€”CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
θ₂₃
δ₁₃
β€”exists_δ₁₃
eq_exp_of_phases
mulExpδ₁₃_on_param_neq_zero_arg
δ₁₃.eq_1
Invariant.mulExpδ₁₃.eq_1
phaseShiftRelation_equiv
Vs_zero_iff_cos_sin_zero
mulExpδ₁₃_on_param_eq_zero_iff
on_param_cos_θ₁₂_eq_zero
on_param_cos_θ₁₃_eq_zero
on_param_cos_θ₂₃_eq_zero
on_param_sin_θ₁₂_eq_zero
on_param_sin_θ₁₃_eq_zero
on_param_sin_θ₂₃_eq_zero
exists_for_CKMatrix πŸ“–mathematicalβ€”CKMMatrix
CKMMatrixSetoid
standParam
β€”eq_standardParameterization_δ₃
exists_δ₁₃ πŸ“–mathematicalβ€”CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
θ₂₃
β€”CKMMatrix.fstRowThdColRealCond_holds_up_to_equiv
phaseShiftRelation_equiv
eq_standParam_of_fstRowThdColRealCond
CKMMatrix.ubOnePhaseCond_hold_up_to_equiv_of_ub_one
eq_standParam_of_ubOnePhaseCond
mulExpδ₁₃_on_param_abs πŸ“–mathematicalβ€”Invariant.mulExpδ₁₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
θ₂₃
β€”mulExpδ₁₃_on_param_δ₁₃
complexAbs_sin_θ₁₃
complexAbs_cos_θ₁₃
complexAbs_sin_θ₁₂
complexAbs_cos_θ₁₂
complexAbs_sin_θ₂₃
complexAbs_cos_θ₂₃
mulExpδ₁₃_on_param_eq_zero_iff πŸ“–mathematicalβ€”Invariant.mulExpδ₁₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
θ₂₃
VudAbs
VubAbs
VusAbs
VcbAbs
VtbAbs
β€”VudAbs_eq_C₁₂_mul_C₁₃
VubAbs_eq_S₁₃
VusAbs_eq_S₁₂_mul_C₁₃
VcbAbs_eq_S₂₃_mul_C₁₃
VtbAbs_eq_C₂₃_mul_C₁₃
S₁₃_eq_β„‚sin_θ₁₃
S₁₂_eq_β„‚sin_θ₁₂
S₂₃_eq_β„‚sin_θ₂₃
C₁₃_eq_β„‚cos_θ₁₃
C₂₃_eq_β„‚cos_θ₂₃
C₁₂_eq_β„‚cos_θ₁₂
mulExpδ₁₃_on_param_δ₁₃
mulExpδ₁₃_on_param_neq_zero_arg πŸ“–mathematicalβ€”Invariant.mulExpδ₁₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
θ₂₃
β€”mulExpδ₁₃_on_param_δ₁₃
mulExpδ₁₃_on_param_abs
mulExpδ₁₃_on_param_δ₁₃ πŸ“–mathematicalβ€”Invariant.mulExpδ₁₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
θ₂₃
β€”mulExpδ₁₃_eq
S₁₂_eq_sin_θ₁₂
S₁₂_nonneg
S₂₃_eq_sin_θ₂₃
S₂₃_nonneg
on_param_cos_θ₁₂_eq_zero πŸ“–mathematicalθ₁₂
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₃
θ₂₃
β€”β€”
on_param_cos_θ₁₃_eq_zero πŸ“–mathematicalθ₁₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₂₃
β€”S₁₃_of_Vub_one
VubAbs_of_cos_θ₁₃_zero
C₁₂_of_Vub_one
S₁₂_of_Vub_one
on_param_cos_θ₂₃_eq_zero πŸ“–mathematicalθ₂₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
β€”β€”
on_param_sin_θ₁₂_eq_zero πŸ“–mathematicalθ₁₂
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₃
θ₂₃
β€”β€”
on_param_sin_θ₁₃_eq_zero πŸ“–mathematicalθ₁₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₂₃
β€”β€”
on_param_sin_θ₂₃_eq_zero πŸ“–mathematicalθ₂₃
CKMMatrix
CKMMatrixSetoid
standParam
θ₁₂
θ₁₃
β€”β€”

---

← Back to Index