Documentation Verification Report

Basic

šŸ“ Source: PhysLean/Particles/StandardModel/Basic.lean

Statistics

MetricCount
DefinitionsGaugeGroup, GaugeGroupI, instInvolutiveStar, instStar, ofU1Subgroup, toSU2, toSU3, toU1, GaugeGroupQuot, GaugeGroupℤ₂, GaugeGroupā„¤ā‚ƒ, GaugeGroupℤ₆, gaugeBundleI, gaugeGroupI_lie, gaugeGroup_lie, gaugeGroupℤ₂SubGroup, gaugeGroupā„¤ā‚ƒSubGroup, gaugeGroupℤ₆SubGroup, gaugeTransformI
19
Theoremsext, ext_iff, ofU1Subgroup_toSU2, ofU1Subgroup_toSU3, ofU1Subgroup_toU1, star_eq, star_toSU2, star_toSU3, star_toU1
9
Total28
āš ļø With sorryGaugeGroupℤ₆, gaugeGroupℤ₆SubGroup
2

StandardModel

Definitions

NameCategoryTheorems
GaugeGroup šŸ“–CompOp—
GaugeGroupI šŸ“–CompOp
27 mathmath: GaugeGroupI.star_toU1, TwoHiggsDoublet.gaugeGroupI_smul_gramMatrix, GaugeGroupI.star_toSU3, HiggsVec.gaugeGroupI_smul_inner, TwoHiggsDoublet.gaugeGroupI_smul_quarticTerm, TwoHiggsDoublet.gaugeGroupI_smul_fst, GaugeGroupI.star_eq, HiggsVec.gaugeGroupI_smul_eq, HiggsVec.gaugeGroupI_smul_phase_snd, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq, TwoHiggsDoublet.gaugeGroupI_smul_massTerm, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq_snd_eq, TwoHiggsDoublet.gaugeGroupI_smul_snd, GaugeGroupI.star_toSU2, HiggsVec.mem_orbit_gaugeGroupI_iff, HiggsVec.gaugeGroupI_smul_eq_U1_smul_SU2, GaugeGroupI.ofU1Subgroup_toSU2, HiggsVec.gaugeGroupI_smul_eq_U1_mul_SU2, TwoHiggsDoublet.gaugeGroupI_smul_potential, HiggsVec.gaugeGroupI_smul_norm, GaugeGroupI.ext_iff, HiggsVec.ofU1Subgroup_smul_eq_smul, GaugeGroupI.ofU1Subgroup_toU1, TwoHiggsDoublet.mem_orbit_gaugeGroupI_iff_gramMatrix, GaugeGroupI.ofU1Subgroup_toSU3, HiggsVec.toRealGroupElem_smul_self, TwoHiggsDoublet.gaugeGroupI_smul_fst_gramVector
GaugeGroupQuot šŸ“–CompData—
GaugeGroupℤ₂ šŸ“–CompOp—
GaugeGroupā„¤ā‚ƒ šŸ“–CompOp—
GaugeGroupℤ₆ šŸ“– āš ļøCompOp—
gaugeBundleI šŸ“–CompOp—
gaugeGroupI_lie šŸ“–CompOp—
gaugeGroup_lie šŸ“–CompOp—
gaugeGroupℤ₂SubGroup šŸ“–CompOp—
gaugeGroupā„¤ā‚ƒSubGroup šŸ“–CompOp—
gaugeGroupℤ₆SubGroup šŸ“– āš ļøCompOp—
gaugeTransformI šŸ“–CompOp—

StandardModel.GaugeGroupI

Definitions

NameCategoryTheorems
instInvolutiveStar šŸ“–CompOp—
instStar šŸ“–CompOp
4 mathmath: star_toU1, star_toSU3, star_eq, star_toSU2
ofU1Subgroup šŸ“–CompOp
4 mathmath: ofU1Subgroup_toSU2, StandardModel.HiggsVec.ofU1Subgroup_smul_eq_smul, ofU1Subgroup_toU1, ofU1Subgroup_toSU3
toSU2 šŸ“–CompOp
6 mathmath: StandardModel.HiggsVec.gaugeGroupI_smul_eq, star_toSU2, StandardModel.HiggsVec.gaugeGroupI_smul_eq_U1_smul_SU2, ofU1Subgroup_toSU2, StandardModel.HiggsVec.gaugeGroupI_smul_eq_U1_mul_SU2, ext_iff
toSU3 šŸ“–CompOp
3 mathmath: star_toSU3, ext_iff, ofU1Subgroup_toSU3
toU1 šŸ“–CompOp
6 mathmath: star_toU1, StandardModel.HiggsVec.gaugeGroupI_smul_eq, StandardModel.HiggsVec.gaugeGroupI_smul_eq_U1_smul_SU2, StandardModel.HiggsVec.gaugeGroupI_smul_eq_U1_mul_SU2, ext_iff, ofU1Subgroup_toU1

Theorems

NameKindAssumesProvesValidatesDepends On
ext šŸ“–ā€”StandardModel.GaugeGroupI
toSU3
toSU2
toU1
———
ext_iff šŸ“–mathematical—StandardModel.GaugeGroupI
toSU3
toSU2
toU1
—ext
ofU1Subgroup_toSU2 šŸ“–mathematical—StandardModel.GaugeGroupI
toSU2
ofU1Subgroup
——
ofU1Subgroup_toSU3 šŸ“–mathematical—StandardModel.GaugeGroupI
toSU3
ofU1Subgroup
——
ofU1Subgroup_toU1 šŸ“–mathematical—StandardModel.GaugeGroupI
toU1
ofU1Subgroup
——
star_eq šŸ“–mathematical—StandardModel.GaugeGroupI
instStar
——
star_toSU2 šŸ“–mathematical—StandardModel.GaugeGroupI
toSU2
instStar
——
star_toSU3 šŸ“–mathematical—StandardModel.GaugeGroupI
toSU3
instStar
——
star_toU1 šŸ“–mathematical—StandardModel.GaugeGroupI
toU1
instStar
——

---

← Back to Index