Documentation Verification Report

Basic

πŸ“ Source: PhysLean/Particles/StandardModel/HiggsBoson/Basic.lean

Statistics

MetricCount
DefinitionsHiggsBundle, HiggsField, const, gaugeAction, gauge_orbit_surject, guage_orbit, instInnerForallSpaceTimeOfNatNatComplex, normSq, toHiggsVec, Β«termβ€–_β€–_H^2Β», HiggsVec, instDistribMulActionGaugeGroupI, instMulActionGaugeGroupI, instSMulGaugeGroupI, ofReal, orthonormBasis, stability_group, stability_group_single, toFin2β„‚, toRealGroupElem
20
Theoremsapply_im_smooth, apply_re_smooth, apply_smooth, const_apply, const_normSq, const_toHiggsVec_apply, contDiff, inner_add_left, inner_add_right, inner_apply, inner_eq_expand, inner_expand_conj, inner_neg_left, inner_neg_right, inner_self_eq_normSq, inner_smooth, inner_symm, inner_zero_left, inner_zero_right, normSq_eq_inner_self_re, normSq_expand, normSq_nonneg, normSq_smooth, normSq_zero, toFin2β„‚_comp_toHiggsVec, toHiggsVec_smooth, toVec_smooth, gaugeGroupI_smul_eq, gaugeGroupI_smul_eq_U1_mul_SU2, gaugeGroupI_smul_eq_U1_smul_SU2, gaugeGroupI_smul_inner, gaugeGroupI_smul_norm, gaugeGroupI_smul_phase_snd, mem_orbit_gaugeGroupI_iff, ofReal_normSq, ofU1Subgroup_smul_eq_smul, smooth_toFin2β„‚, toRealGroupElem_smul_self, instContMDiffVectorBundleTopWithTopENatRealSpaceTimeOfNatNatHiggsVecHiggsBundleVectorAsSmoothManifold
39
Total59

StandardModel

Definitions

NameCategoryTheorems
HiggsBundle πŸ“–CompOp
27 mathmath: HiggsField.toVec_smooth, HiggsField.const_toHiggsVec_apply, HiggsField.apply_smooth, HiggsField.apply_im_smooth, HiggsField.const_apply, instContMDiffVectorBundleTopWithTopENatRealSpaceTimeOfNatNatHiggsVecHiggsBundleVectorAsSmoothManifold, HiggsField.inner_zero_right, HiggsField.inner_add_left, HiggsField.inner_neg_right, HiggsField.Potential.eq_zero_iff_of_ΞΌSq_nonpos_𝓡_pos, HiggsField.inner_neg_left, HiggsField.Potential.isMaxOn_iff_field_of_𝓡_neg, HiggsField.inner_add_right, HiggsField.normSq_expand, HiggsField.Potential.toFun_zero, HiggsField.apply_re_smooth, HiggsField.inner_eq_expand, HiggsField.inner_zero_left, HiggsField.inner_expand_conj, HiggsField.const_normSq, HiggsField.Potential.isMinOn_iff_field_of_𝓡_pos, HiggsField.Potential.toFun_eq_zero_iff, HiggsField.Potential.isMinOn_iff_field_of_ΞΌSq_nonpos_𝓡_pos, HiggsField.toFin2β„‚_comp_toHiggsVec, HiggsField.inner_apply, HiggsField.contDiff, HiggsField.normSq_zero
HiggsField πŸ“–CompOp
34 mathmath: HiggsField.toVec_smooth, HiggsField.const_toHiggsVec_apply, HiggsField.inner_symm, HiggsField.Potential.isMinOn_iff_of_ΞΌSq_nonpos_𝓡_pos, HiggsField.apply_smooth, HiggsField.inner_smooth, HiggsField.apply_im_smooth, HiggsField.const_apply, HiggsField.inner_zero_right, HiggsField.Potential.isMinOn_iff_field_of_ΞΌSq_nonneg_𝓡_pos, HiggsField.inner_add_left, HiggsField.inner_neg_right, HiggsField.Potential.eq_zero_iff_of_ΞΌSq_nonpos_𝓡_pos, HiggsField.inner_neg_left, HiggsField.Potential.isMaxOn_iff_field_of_𝓡_neg, HiggsField.inner_add_right, HiggsField.normSq_expand, HiggsField.Potential.toFun_zero, HiggsField.apply_re_smooth, HiggsField.Potential.isMaxOn_iff_isMinOn_neg, HiggsField.inner_eq_expand, HiggsField.inner_zero_left, HiggsField.inner_self_eq_normSq, HiggsField.inner_expand_conj, HiggsField.Potential.isMinOn_iff_of_ΞΌSq_nonneg_𝓡_pos, HiggsField.const_normSq, HiggsField.normSq_eq_inner_self_re, HiggsField.Potential.isMinOn_iff_field_of_𝓡_pos, HiggsField.Potential.toFun_eq_zero_iff, HiggsField.Potential.isMinOn_iff_field_of_ΞΌSq_nonpos_𝓡_pos, HiggsField.toFin2β„‚_comp_toHiggsVec, HiggsField.inner_apply, HiggsField.contDiff, HiggsField.normSq_zero
HiggsVec πŸ“–CompOp
61 mathmath: HiggsField.toVec_smooth, HiggsField.const_toHiggsVec_apply, HiggsField.apply_smooth, HiggsField.apply_im_smooth, TwoHiggsDoublet.gramVector_inr_one_eq, HiggsVec.gaugeGroupI_smul_inner, TwoHiggsDoublet.massTerm_stabilityCounterExample, HiggsField.const_apply, TwoHiggsDoublet.gaugeGroupI_smul_fst, instContMDiffVectorBundleTopWithTopENatRealSpaceTimeOfNatNatHiggsVecHiggsBundleVectorAsSmoothManifold, TwoHiggsDoublet.normSq_Ξ¦2_eq_gramVector, TwoHiggsDoublet.quarticTerm_stabilityCounterExample, HiggsField.inner_zero_right, HiggsVec.ofReal_normSq, HiggsVec.gaugeGroupI_smul_eq, TwoHiggsDoublet.gramVector_inl_zero_eq, HiggsField.inner_add_left, HiggsVec.gaugeGroupI_smul_phase_snd, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq, HiggsField.inner_neg_right, HiggsField.Potential.eq_zero_iff_of_ΞΌSq_nonpos_𝓡_pos, HiggsField.inner_neg_left, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq_snd_eq, HiggsField.Potential.isMaxOn_iff_field_of_𝓡_neg, HiggsField.inner_add_right, HiggsField.normSq_expand, TwoHiggsDoublet.eq_fst_norm_of_eq_gramMatrix, HiggsField.Potential.toFun_zero, TwoHiggsDoublet.gramMatrix_det_eq_real, TwoHiggsDoublet.gaugeGroupI_smul_snd, TwoHiggsDoublet.normSq_Ξ¦1_eq_gramVector, HiggsVec.mem_orbit_gaugeGroupI_iff, HiggsField.apply_re_smooth, HiggsField.inner_eq_expand, HiggsField.inner_zero_left, HiggsVec.smooth_toFin2β„‚, HiggsField.inner_expand_conj, HiggsVec.gaugeGroupI_smul_eq_U1_smul_SU2, TwoHiggsDoublet.Ξ¦2_inner_Ξ¦1_eq_gramVector, HiggsField.toHiggsVec_smooth, TwoHiggsDoublet.potential_stabilityCounterExample, HiggsField.const_normSq, HiggsField.Potential.isMinOn_iff_field_of_𝓡_pos, HiggsField.Potential.toFun_eq_zero_iff, TwoHiggsDoublet.gramVector_inr_two_eq, HiggsField.Potential.isMinOn_iff_field_of_ΞΌSq_nonpos_𝓡_pos, HiggsVec.gaugeGroupI_smul_eq_U1_mul_SU2, HiggsField.toFin2β„‚_comp_toHiggsVec, TwoHiggsDoublet.quarticTerm_stabilityCounterExample_eq_norm_pow_four, HiggsField.inner_apply, HiggsVec.gaugeGroupI_smul_norm, TwoHiggsDoublet.gramVector_inr_zero_eq, TwoHiggsDoublet.eq_snd_norm_of_eq_gramMatrix, TwoHiggsDoublet.Ξ¦1_inner_Ξ¦2_eq_gramVector, HiggsVec.ofU1Subgroup_smul_eq_smul, TwoHiggsDoublet.gramMatrix_det_eq, TwoHiggsDoublet.quarticTerm_𝓡₄_expand, HiggsField.contDiff, HiggsField.normSq_zero, TwoHiggsDoublet.Ξ¦1_inner_Ξ¦2_normSq_eq_gramVector, HiggsVec.toRealGroupElem_smul_self

Theorems

NameKindAssumesProvesValidatesDepends On
instContMDiffVectorBundleTopWithTopENatRealSpaceTimeOfNatNatHiggsVecHiggsBundleVectorAsSmoothManifold πŸ“–mathematicalβ€”SpaceTime
HiggsVec
HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
β€”β€”

StandardModel.HiggsField

Definitions

NameCategoryTheorems
const πŸ“–CompOp
3 mathmath: const_toHiggsVec_apply, const_apply, const_normSq
gaugeAction πŸ“–CompOpβ€”
gauge_orbit_surject πŸ“–CompOpβ€”
guage_orbit πŸ“–CompOpβ€”
instInnerForallSpaceTimeOfNatNatComplex πŸ“–CompOp
13 mathmath: inner_symm, inner_smooth, inner_zero_right, inner_add_left, inner_neg_right, inner_neg_left, inner_add_right, inner_eq_expand, inner_zero_left, inner_self_eq_normSq, inner_expand_conj, normSq_eq_inner_self_re, inner_apply
normSq πŸ“–CompOp
14 mathmath: normSq_nonneg, normSq_smooth, Potential.as_quad, Potential.isMinOn_iff_field_of_ΞΌSq_nonneg_𝓡_pos, Potential.isMaxOn_iff_field_of_𝓡_neg, normSq_expand, Potential.quadDiscrim_eq_zero_iff_normSq, inner_self_eq_normSq, const_normSq, normSq_eq_inner_self_re, Potential.isMinOn_iff_field_of_𝓡_pos, Potential.toFun_eq_zero_iff, normSq_zero, Potential.complete_square
toHiggsVec πŸ“–CompOp
3 mathmath: const_toHiggsVec_apply, toHiggsVec_smooth, toFin2β„‚_comp_toHiggsVec
Β«termβ€–_β€–_H^2Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_im_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
StandardModel.HiggsField
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.asSmoothManifold
StandardModel.HiggsVec
β€”apply_smooth
apply_re_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
StandardModel.HiggsField
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.asSmoothManifold
StandardModel.HiggsVec
β€”apply_smooth
apply_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
StandardModel.HiggsField
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.asSmoothManifold
StandardModel.HiggsVec
β€”contDiff
const_apply πŸ“–mathematicalβ€”StandardModel.HiggsField
SpaceTime
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
const
β€”β€”
const_normSq πŸ“–mathematicalβ€”normSq
StandardModel.HiggsVec
StandardModel.HiggsField
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsBundle
const
β€”β€”
const_toHiggsVec_apply πŸ“–mathematicalβ€”StandardModel.HiggsField
SpaceTime
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
const
toHiggsVec
β€”β€”
contDiff πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
StandardModel.HiggsField
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
β€”toHiggsVec_smooth
inner_add_left πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
inner_add_right πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
inner_apply πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
StandardModel.HiggsBundle
SpaceTime
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
β€”β€”
inner_eq_expand πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
SpaceTime
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
β€”β€”
inner_expand_conj πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
SpaceTime
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
β€”β€”
inner_neg_left πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
inner_neg_right πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
inner_self_eq_normSq πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
normSq
β€”β€”
inner_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
β€”inner_eq_expand
apply_re_smooth
apply_im_smooth
inner_symm πŸ“–mathematicalβ€”SpaceTime
StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
β€”β€”
inner_zero_left πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
inner_zero_right πŸ“–mathematicalβ€”StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
normSq_eq_inner_self_re πŸ“–mathematicalβ€”normSq
StandardModel.HiggsField
instInnerForallSpaceTimeOfNatNatComplex
β€”inner_self_eq_normSq
normSq_expand πŸ“–mathematicalβ€”normSq
StandardModel.HiggsField
SpaceTime
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
β€”normSq_eq_inner_self_re
inner_expand_conj
normSq_nonneg πŸ“–mathematicalβ€”normSqβ€”β€”
normSq_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
normSq
β€”normSq_expand
apply_re_smooth
apply_im_smooth
normSq_zero πŸ“–mathematicalβ€”normSq
StandardModel.HiggsField
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
SpaceTime
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
StandardModel.HiggsBundle
β€”β€”
toFin2β„‚_comp_toHiggsVec πŸ“–mathematicalβ€”toHiggsVec
StandardModel.HiggsField
SpaceTime
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.asSmoothManifold
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
β€”β€”
toHiggsVec_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
StandardModel.HiggsVec
toHiggsVec
β€”β€”
toVec_smooth πŸ“–mathematicalβ€”SpaceTime
Lorentz.Vector.isNormedAddCommGroup
Lorentz.Vector.isNormedSpace
Lorentz.Vector.instChartedSpace
StandardModel.HiggsField
StandardModel.HiggsBundle
Lorentz.Vector
Lorentz.Vector.asSmoothManifold
StandardModel.HiggsVec
β€”toHiggsVec_smooth

StandardModel.HiggsVec

Definitions

NameCategoryTheorems
instDistribMulActionGaugeGroupI πŸ“–CompOpβ€”
instMulActionGaugeGroupI πŸ“–CompOpβ€”
instSMulGaugeGroupI πŸ“–CompOp
13 mathmath: gaugeGroupI_smul_inner, TwoHiggsDoublet.gaugeGroupI_smul_fst, gaugeGroupI_smul_eq, gaugeGroupI_smul_phase_snd, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq_snd_eq, TwoHiggsDoublet.gaugeGroupI_smul_snd, mem_orbit_gaugeGroupI_iff, gaugeGroupI_smul_eq_U1_smul_SU2, gaugeGroupI_smul_eq_U1_mul_SU2, gaugeGroupI_smul_norm, ofU1Subgroup_smul_eq_smul, toRealGroupElem_smul_self
ofReal πŸ“–CompOp
2 mathmath: ofReal_normSq, toRealGroupElem_smul_self
orthonormBasis πŸ“–CompOpβ€”
stability_group πŸ“–CompOpβ€”
stability_group_single πŸ“–CompOpβ€”
toFin2β„‚ πŸ“–CompOp
1 mathmath: smooth_toFin2β„‚
toRealGroupElem πŸ“–CompOp
1 mathmath: toRealGroupElem_smul_self

Theorems

NameKindAssumesProvesValidatesDepends On
gaugeGroupI_smul_eq πŸ“–mathematicalβ€”StandardModel.GaugeGroupI
StandardModel.HiggsVec
instSMulGaugeGroupI
StandardModel.GaugeGroupI.toU1
StandardModel.GaugeGroupI.toSU2
β€”β€”
gaugeGroupI_smul_eq_U1_mul_SU2 πŸ“–mathematicalβ€”StandardModel.GaugeGroupI
StandardModel.HiggsVec
instSMulGaugeGroupI
StandardModel.GaugeGroupI.toSU2
StandardModel.GaugeGroupI.toU1
β€”gaugeGroupI_smul_eq
gaugeGroupI_smul_eq_U1_smul_SU2 πŸ“–mathematicalβ€”StandardModel.GaugeGroupI
StandardModel.HiggsVec
instSMulGaugeGroupI
StandardModel.GaugeGroupI.toU1
StandardModel.GaugeGroupI.toSU2
β€”gaugeGroupI_smul_eq
gaugeGroupI_smul_inner πŸ“–mathematicalβ€”StandardModel.HiggsVec
StandardModel.GaugeGroupI
instSMulGaugeGroupI
β€”gaugeGroupI_smul_eq_U1_mul_SU2
gaugeGroupI_smul_norm πŸ“–mathematicalβ€”StandardModel.HiggsVec
StandardModel.GaugeGroupI
instSMulGaugeGroupI
β€”gaugeGroupI_smul_inner
gaugeGroupI_smul_phase_snd πŸ“–mathematicalβ€”StandardModel.GaugeGroupI
StandardModel.HiggsVec
instSMulGaugeGroupI
β€”ofU1Subgroup_smul_eq_smul
mem_orbit_gaugeGroupI_iff πŸ“–mathematicalβ€”StandardModel.HiggsVec
StandardModel.GaugeGroupI
instSMulGaugeGroupI
β€”gaugeGroupI_smul_norm
toRealGroupElem_smul_self
ofReal_normSq πŸ“–mathematicalβ€”StandardModel.HiggsVec
ofReal
β€”β€”
ofU1Subgroup_smul_eq_smul πŸ“–mathematicalβ€”StandardModel.GaugeGroupI
StandardModel.HiggsVec
instSMulGaugeGroupI
StandardModel.GaugeGroupI.ofU1Subgroup
β€”gaugeGroupI_smul_eq_U1_smul_SU2
smooth_toFin2β„‚ πŸ“–mathematicalβ€”StandardModel.HiggsVec
toFin2β„‚
β€”β€”
toRealGroupElem_smul_self πŸ“–mathematicalβ€”StandardModel.GaugeGroupI
StandardModel.HiggsVec
instSMulGaugeGroupI
toRealGroupElem
ofReal
β€”gaugeGroupI_smul_eq

---

← Back to Index