Basic
π Source: PhysLean/Particles/StandardModel/HiggsBoson/Basic.lean
Statistics
StandardModel
Definitions
Theorems
StandardModel.HiggsField
Definitions
| Name | Category | Theorems |
|---|---|---|
const π | CompOp | |
gaugeAction π | CompOp | β |
gauge_orbit_surject π | CompOp | β |
guage_orbit π | CompOp | β |
instInnerForallSpaceTimeOfNatNatComplex π | CompOp | |
normSq π | CompOp | 14 mathmath:normSq_nonneg, normSq_smooth, Potential.as_quad, Potential.isMinOn_iff_field_of_ΞΌSq_nonneg_π΅_pos, Potential.isMaxOn_iff_field_of_π΅_neg, normSq_expand, Potential.quadDiscrim_eq_zero_iff_normSq, inner_self_eq_normSq, const_normSq, normSq_eq_inner_self_re, Potential.isMinOn_iff_field_of_π΅_pos, Potential.toFun_eq_zero_iff, normSq_zero, Potential.complete_square |
toHiggsVec π | CompOp | |
Β«termβ_β_H^2Β» π | CompOp | β |
Theorems
StandardModel.HiggsVec
Definitions
| Name | Category | Theorems |
|---|---|---|
instDistribMulActionGaugeGroupI π | CompOp | β |
instMulActionGaugeGroupI π | CompOp | β |
instSMulGaugeGroupI π | CompOp | 13 mathmath:gaugeGroupI_smul_inner, TwoHiggsDoublet.gaugeGroupI_smul_fst, gaugeGroupI_smul_eq, gaugeGroupI_smul_phase_snd, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq, TwoHiggsDoublet.gaugeGroupI_exists_fst_eq_snd_eq, TwoHiggsDoublet.gaugeGroupI_smul_snd, mem_orbit_gaugeGroupI_iff, gaugeGroupI_smul_eq_U1_smul_SU2, gaugeGroupI_smul_eq_U1_mul_SU2, gaugeGroupI_smul_norm, ofU1Subgroup_smul_eq_smul, toRealGroupElem_smul_self |
ofReal π | CompOp | |
orthonormBasis π | CompOp | β |
stability_group π | CompOp | β |
stability_group_single π | CompOp | β |
toFin2β π | CompOp | |
toRealGroupElem π | CompOp |
Theorems
---