Documentation Verification Report

Basic

📁 Source: PhysLean/QuantumMechanics/OneDimension/HarmonicOscillator/Basic.lean

Statistics

MetricCount
DefinitionsHarmonicOscillator, m, schrodingerOperator, «termPᵒᵖ», «termXᵒᵖ», ξ, ω
7
Theoremsderiv_ofReal, differentiableAt_ofReal, ofReal_hasDerivAt, hm, , m_mul_ω_div_two_ℏ_pos, m_mul_ω_div_ℏ_pos, m_ne_zero, one_over_ξ, one_over_ξ_sq, schrodingerOperator_add, schrodingerOperator_eq, schrodingerOperator_eq_ξ, schrodingerOperator_parity, schrodingerOperator_smul, ξ_abs, ξ_inverse, ξ_ne_zero, ξ_nonneg, ξ_pos, ξ_sq
21
Total28

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
deriv_ofReal 📖ofReal_hasDerivAt
differentiableAt_ofReal 📖ofReal_hasDerivAt
ofReal_hasDerivAt 📖

QuantumMechanics.OneDimension

Definitions

NameCategoryTheorems
HarmonicOscillator 📖CompData

QuantumMechanics.OneDimension.HarmonicOscillator

Definitions

NameCategoryTheorems
m 📖CompOp
9 mathmath: one_over_ξ, ξ_inverse, schrodingerOperator_eq_ξ, one_over_ξ_sq, m_mul_ω_div_two_ℏ_pos, ξ_sq, hm, schrodingerOperator_eq, m_mul_ω_div_ℏ_pos
schrodingerOperator 📖CompOp
6 mathmath: schrodingerOperator_add, schrodingerOperator_eigenfunction, schrodingerOperator_eq_ξ, schrodingerOperator_smul, schrodingerOperator_parity, schrodingerOperator_eq
«termPᵒᵖ» 📖CompOp
«termXᵒᵖ» 📖CompOp
ξ 📖CompOp
30 mathmath: one_over_ξ, orthogonal_exp_of_mem_orthogonal, mul_polynomial_integrable, eigenfunction_point_norm, deriv_deriv_eigenfunction, eigenfunction_zero, mul_physHermite_integrable, fourierIntegral_zero_of_mem_orthogonal, mul_power_integrable, ξ_inverse, deriv_physHermite_characteristic_length, schrodingerOperator_eq_ξ, ξ_nonneg, orthogonal_physHermite_of_mem_orthogonal, deriv_eigenfunction_succ, deriv_eigenfunction_zero', deriv_deriv_eigenfunction_zero, one_over_ξ_sq, deriv_deriv_eigenfunction_succ, deriv_eigenfunction_zero, eigenfunction_mul, ξ_sq, eigenfunction_eq, eigenfunction_mul_self, eigenfunction_eq_mul_eigenfunction_zero, orthogonal_polynomial_of_mem_orthogonal, orthogonal_power_of_mem_orthogonal, ξ_pos, ξ_abs, eigenfunction_point_norm_sq
ω 📖CompOp
8 mathmath: one_over_ξ, ξ_inverse, one_over_ξ_sq, m_mul_ω_div_two_ℏ_pos, ξ_sq, , schrodingerOperator_eq, m_mul_ω_div_ℏ_pos

Theorems

NameKindAssumesProvesValidatesDepends On
hm 📖mathematicalm
📖mathematicalω
m_mul_ω_div_two_ℏ_pos 📖mathematicalm
ω
Constants.ℏ
hm

Constants.ℏ_pos
m_mul_ω_div_ℏ_pos 📖mathematicalm
ω
Constants.ℏ
hm

Constants.ℏ_pos
m_ne_zero 📖hm
one_over_ξ 📖mathematicalξ
m
ω
Constants.ℏ
Constants.ℏ_pos
one_over_ξ_sq 📖mathematicalξ
m
ω
Constants.ℏ
one_over_ξ
m_mul_ω_div_ℏ_pos
schrodingerOperator_add 📖mathematicalschrodingerOperator
schrodingerOperator_eq 📖mathematicalschrodingerOperator
Constants.ℏ
m
ω
schrodingerOperator_eq_ξ 📖mathematicalschrodingerOperator
Constants.ℏ
m
ξ
schrodingerOperator_eq
ξ_sq
m_ne_zero
Constants.ℏ_ne_zero
schrodingerOperator_parity 📖mathematicalschrodingerOperator
QuantumMechanics.OneDimension.HilbertSpace.parityOperator
schrodingerOperator_smul 📖mathematicalschrodingerOperator
ξ_abs 📖mathematicalξξ_nonneg
ξ_inverse 📖mathematicalξ
m
ω
Constants.ℏ
one_over_ξ
ξ_ne_zero 📖ξ_pos
ξ_nonneg 📖mathematicalξ
ξ_pos 📖mathematicalξξ.eq_1
Constants.ℏ_pos
hm
ξ_sq 📖mathematicalξ
Constants.ℏ
m
ω
ξ.eq_1
Constants.ℏ_nonneg
hm

---

← Back to Index