Documentation Verification Report

Eigenfunction

πŸ“ Source: PhysLean/QuantumMechanics/OneDimension/HarmonicOscillator/Eigenfunction.lean

Statistics

MetricCount
Definitionseigenfunction
1
Theoremseigenfunction_aeStronglyMeasurable, eigenfunction_conj, eigenfunction_continuous, eigenfunction_differentiableAt, eigenfunction_eq, eigenfunction_eq_mul_eigenfunction_zero, eigenfunction_integrable, eigenfunction_linearIndependent, eigenfunction_memHS, eigenfunction_mul, eigenfunction_mul_self, eigenfunction_normalized, eigenfunction_orthogonal, eigenfunction_orthonormal, eigenfunction_parity, eigenfunction_point_norm, eigenfunction_point_norm_sq, eigenfunction_square_integrable, eigenfunction_zero
19
Total20

QuantumMechanics.OneDimension.HarmonicOscillator

Definitions

NameCategoryTheorems
eigenfunction πŸ“–CompOp
28 mathmath: mul_eigenfunction_integrable, eigenfunction_linearIndependent, eigenfunction_point_norm, deriv_deriv_eigenfunction, eigenfunction_square_integrable, eigenfunction_zero, eigenfunction_conj, eigenfunction_memHS, schrodingerOperator_eigenfunction, eigenfunction_orthonormal, eigenfunction_integrable, eigenfunction_differentiableAt, deriv_eigenfunction_succ, deriv_eigenfunction_zero', deriv_deriv_eigenfunction_zero, deriv_deriv_eigenfunction_succ, eigenfunction_normalized, deriv_eigenfunction_zero, eigenfunction_completeness, eigenfunction_continuous, eigenfunction_mul, eigenfunction_eq, eigenfunction_mul_self, eigenfunction_eq_mul_eigenfunction_zero, eigenfunction_orthogonal, eigenfunction_parity, eigenfunction_aeStronglyMeasurable, eigenfunction_point_norm_sq

Theorems

NameKindAssumesProvesValidatesDepends On
eigenfunction_aeStronglyMeasurable πŸ“–mathematicalβ€”eigenfunctionβ€”eigenfunction_integrable
eigenfunction_conj πŸ“–mathematicalβ€”eigenfunctionβ€”eigenfunction_eq
eigenfunction_continuous πŸ“–mathematicalβ€”eigenfunctionβ€”eigenfunction_eq
eigenfunction_differentiableAt πŸ“–mathematicalβ€”eigenfunctionβ€”eigenfunction_eq
Complex.differentiableAt_ofReal
PhysLean.physHermite_differentiableAt
eigenfunction_eq πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”β€”
eigenfunction_eq_mul_eigenfunction_zero πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”β€”
eigenfunction_integrable πŸ“–mathematicalβ€”eigenfunctionβ€”eigenfunction_eq
PhysLean.guassian_integrable_polynomial_cons
eigenfunction_linearIndependent πŸ“–mathematicalβ€”QuantumMechanics.OneDimension.HilbertSpace
eigenfunction
eigenfunction_memHS
β€”eigenfunction_memHS
eigenfunction_orthonormal
eigenfunction_memHS πŸ“–mathematicalβ€”QuantumMechanics.OneDimension.HilbertSpace.MemHS
eigenfunction
β€”QuantumMechanics.OneDimension.HilbertSpace.memHS_iff
eigenfunction_aeStronglyMeasurable
eigenfunction_square_integrable
eigenfunction_mul πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”β€”
eigenfunction_mul_self πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”eigenfunction_mul
eigenfunction_normalized πŸ“–mathematicalβ€”QuantumMechanics.OneDimension.HilbertSpace
eigenfunction
eigenfunction_memHS
β€”eigenfunction_memHS
eigenfunction_conj
eigenfunction_mul_self
PhysLean.physHermite_norm_cons
ΞΎ_abs
ΞΎ_pos
eigenfunction_orthogonal πŸ“–mathematicalβ€”QuantumMechanics.OneDimension.HilbertSpace
eigenfunction
eigenfunction_memHS
β€”eigenfunction_memHS
eigenfunction_conj
eigenfunction_mul
PhysLean.physHermite_orthogonal_cons
eigenfunction_orthonormal πŸ“–mathematicalβ€”QuantumMechanics.OneDimension.HilbertSpace
eigenfunction
eigenfunction_memHS
β€”eigenfunction_memHS
eigenfunction_normalized
eigenfunction_orthogonal
eigenfunction_parity πŸ“–mathematicalβ€”QuantumMechanics.OneDimension.HilbertSpace.parityOperator
eigenfunction
β€”eigenfunction_eq
PhysLean.physHermite_eq_aeval
PhysLean.physHermite_parity
eigenfunction_point_norm πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”eigenfunction_eq
eigenfunction_point_norm_sq πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”eigenfunction_point_norm
eigenfunction_square_integrable πŸ“–mathematicalβ€”eigenfunctionβ€”eigenfunction_point_norm_sq
PhysLean.physHermite_pow
PhysLean.guassian_integrable_polynomial_cons
eigenfunction_zero πŸ“–mathematicalβ€”eigenfunction
ΞΎ
β€”β€”

---

← Back to Index