PlanckConstant
π Source: PhysLean/QuantumMechanics/PlanckConstant.lean
Statistics
Constants
Definitions
| Name | Category | Theorems |
β π | CompOp | 22 mathmath: QuantumMechanics.OneDimension.positionOperatorSchwartz_momentumOperatorSchwartz_eq, QuantumMechanics.OneDimension.HarmonicOscillator.one_over_ΞΎ, β_pos, QuantumMechanics.OneDimension.momentumOperator_eq_smul, QuantumMechanics.angularMomentum_commutation_position, QuantumMechanics.OneDimension.momentumOperatorSchwartz_positionOperatorSchwartz_eq, QuantumMechanics.angularMomentum_commutation_angularMomentum, QuantumMechanics.position_commutation_momentum, β_nonneg, QuantumMechanics.OneDimension.HarmonicOscillator.ΞΎ_inverse, QuantumMechanics.OneDimension.HarmonicOscillator.schrodingerOperator_eq_ΞΎ, QuantumMechanics.OneDimension.HarmonicOscillator.one_over_ΞΎ_sq, QuantumMechanics.OneDimension.planeWaveFunctional_generalized_eigenvector_momentumOperatorUnbounded, QuantumMechanics.OneDimension.momentumOperatorSchwartz_apply, QuantumMechanics.momentumOperator_apply, QuantumMechanics.momentumOperator_apply_fun, QuantumMechanics.OneDimension.HarmonicOscillator.m_mul_Ο_div_two_β_pos, QuantumMechanics.OneDimension.HarmonicOscillator.ΞΎ_sq, QuantumMechanics.angularMomentum_commutation_momentum, QuantumMechanics.OneDimension.positionOperatorSchwartz_commutation_momentumOperatorSchwartz, QuantumMechanics.OneDimension.HarmonicOscillator.schrodingerOperator_eq, QuantumMechanics.OneDimension.HarmonicOscillator.m_mul_Ο_div_β_pos
|
Theorems
---
β Back to Index