Documentation Verification Report

CliffordAlgebra

📁 Source: PhysLean/Relativity/CliffordAlgebra.lean

Statistics

MetricCount
Definitionsγ, diracAlgebra, diracForm, ofCliffordAlgebra, γSet, γ0, γ1, γ2, γ3, γ5
10
Theoremsone_fin_four, diracForm_apply, ofCliffordAlgebra_range_eq_top, ofCliffordAlgebra_surjective, ofCliffordAlgebra_ι_single, γSet_subset_diracAlgebra, γ_in_diracAlgebra, γ_in_γSet, γ_subtype_in_range, γ0_mul_γ0, γ1_mul_γ0, γ1_mul_γ1, γ2_mul_γ0, γ2_mul_γ1, γ2_mul_γ2, γ3_mul_γ0, γ3_mul_γ1, γ3_mul_γ2, γ3_mul_γ3
19
Total29

Matrix

Theorems

NameKindAssumesProvesValidatesDepends On
one_fin_four 📖

spaceTime

Definitions

NameCategoryTheorems
γ 📖CompOp
4 mathmath: γ.γ_in_γSet, γ.ofCliffordAlgebra_ι_single, γ.γ_in_diracAlgebra, γ.γ_subtype_in_range
γ0 📖CompOp
4 mathmath: γ1_mul_γ0, γ2_mul_γ0, γ3_mul_γ0, γ0_mul_γ0
γ1 📖CompOp
4 mathmath: γ1_mul_γ0, γ3_mul_γ1, γ1_mul_γ1, γ2_mul_γ1
γ2 📖CompOp
4 mathmath: γ2_mul_γ1, γ2_mul_γ0, γ3_mul_γ2, γ2_mul_γ2
γ3 📖CompOp
4 mathmath: γ3_mul_γ1, γ3_mul_γ0, γ3_mul_γ2, γ3_mul_γ3
γ5 📖CompOp

Theorems

NameKindAssumesProvesValidatesDepends On
γ0_mul_γ0 📖mathematicalγ0Matrix.one_fin_four
γ1_mul_γ0 📖mathematicalγ1
γ0
γ1_mul_γ1 📖mathematicalγ1Matrix.one_fin_four
γ2_mul_γ0 📖mathematicalγ2
γ0
γ2_mul_γ1 📖mathematicalγ2
γ1
γ2_mul_γ2 📖mathematicalγ2Matrix.one_fin_four
γ3_mul_γ0 📖mathematicalγ3
γ0
γ3_mul_γ1 📖mathematicalγ3
γ1
γ3_mul_γ2 📖mathematicalγ3
γ2
γ3_mul_γ3 📖mathematicalγ3Matrix.one_fin_four

spaceTime.γ

Definitions

NameCategoryTheorems
diracAlgebra 📖CompOp
6 mathmath: ofCliffordAlgebra_surjective, ofCliffordAlgebra_ι_single, γ_in_diracAlgebra, ofCliffordAlgebra_range_eq_top, γSet_subset_diracAlgebra, γ_subtype_in_range
diracForm 📖CompOp
5 mathmath: ofCliffordAlgebra_surjective, diracForm_apply, ofCliffordAlgebra_ι_single, ofCliffordAlgebra_range_eq_top, γ_subtype_in_range
ofCliffordAlgebra 📖CompOp
4 mathmath: ofCliffordAlgebra_surjective, ofCliffordAlgebra_ι_single, ofCliffordAlgebra_range_eq_top, γ_subtype_in_range
γSet 📖CompOp
2 mathmath: γ_in_γSet, γSet_subset_diracAlgebra

Theorems

NameKindAssumesProvesValidatesDepends On
diracForm_apply 📖mathematicaldiracForm
ofCliffordAlgebra_range_eq_top 📖mathematicaldiracForm
diracAlgebra
ofCliffordAlgebra
ofCliffordAlgebra_surjective 📖mathematicaldiracForm
diracAlgebra
ofCliffordAlgebra
ofCliffordAlgebra_range_eq_top
ofCliffordAlgebra_ι_single 📖mathematicaldiracForm
diracAlgebra
ofCliffordAlgebra
spaceTime.γ
γ_in_diracAlgebra
γ_in_diracAlgebra
γSet_subset_diracAlgebra 📖mathematicalγSet
diracAlgebra
γ_in_diracAlgebra 📖mathematicaldiracAlgebra
spaceTime.γ
γSet_subset_diracAlgebra
γ_in_γSet
γ_in_γSet 📖mathematicalγSet
spaceTime.γ
γ_subtype_in_range 📖mathematicaldiracAlgebra
diracForm
ofCliffordAlgebra
spaceTime.γ
γ_in_diracAlgebra
γ_in_diracAlgebra
ofCliffordAlgebra_ι_single

---

← Back to Index