Documentation Verification Report

Proper

πŸ“ Source: PhysLean/Relativity/LorentzGroup/Proper.lean

Statistics

MetricCount
DefinitionsIsProper, coeForβ„€β‚‚, detContinuous, detRep, instDecidablePredElemMatrixSumFinOfNatNatRealIsProper, instTopologicalSpaceMultiplicativeZModOfNatNat
6
TheoremscoeForβ„€β‚‚_apply, detContinuous_eq_iff_det_eq, detContinuous_eq_one, detContinuous_eq_zero, detRep_apply, detRep_continuous, detRep_on_connected_component, det_eq_one_or_neg_one, det_of_joined, det_on_connected_component, instDiscreteTopologyMultiplicativeZModOfNatNat, instIsTopologicalGroupMultiplicativeZModOfNatNat, isProper_id, isProper_iff, isProper_mul, isProper_on_connected_component
16
Total22

LorentzGroup

Definitions

NameCategoryTheorems
IsProper πŸ“–MathDef
6 mathmath: mem_rotations_iff, generalizedBoost_isProper, lorentzAlgebra.exp_isProper, isProper_iff, isProper_on_connected_component, isProper_id
coeForβ„€β‚‚ πŸ“–CompOp
1 mathmath: coeForβ„€β‚‚_apply
detContinuous πŸ“–CompOp
4 mathmath: detRep_apply, detContinuous_eq_one, detContinuous_eq_iff_det_eq, detContinuous_eq_zero
detRep πŸ“–CompOp
4 mathmath: detRep_apply, detRep_on_connected_component, isProper_iff, detRep_continuous
instDecidablePredElemMatrixSumFinOfNatNatRealIsProper πŸ“–CompOpβ€”
instTopologicalSpaceMultiplicativeZModOfNatNat πŸ“–CompOp
10 mathmath: orthchroMap_not_IsOrthochronous, instDiscreteTopologyMultiplicativeZModOfNatNat, coeForβ„€β‚‚_apply, instIsTopologicalGroupMultiplicativeZModOfNatNat, detRep_apply, orthchroMap_IsOrthochronous, detContinuous_eq_one, detRep_continuous, detContinuous_eq_iff_det_eq, detContinuous_eq_zero

Theorems

NameKindAssumesProvesValidatesDepends On
coeForβ„€β‚‚_apply πŸ“–mathematicalβ€”instTopologicalSpaceMultiplicativeZModOfNatNat
coeForβ„€β‚‚
β€”β€”
detContinuous_eq_iff_det_eq πŸ“–mathematicalβ€”LorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
instTopologicalSpaceMultiplicativeZModOfNatNat
detContinuous
β€”det_eq_one_or_neg_one
detContinuous_eq_one
detContinuous_eq_zero
detContinuous_eq_one πŸ“–mathematicalβ€”LorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
instTopologicalSpaceMultiplicativeZModOfNatNat
detContinuous
β€”β€”
detContinuous_eq_zero πŸ“–mathematicalβ€”LorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
instTopologicalSpaceMultiplicativeZModOfNatNat
detContinuous
β€”det_eq_one_or_neg_one
detRep_apply πŸ“–mathematicalβ€”LorentzGroup
lorentzGroupIsGroup
detRep
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
instTopologicalSpaceMultiplicativeZModOfNatNat
detContinuous
β€”β€”
detRep_continuous πŸ“–mathematicalβ€”LorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
instTopologicalSpaceMultiplicativeZModOfNatNat
lorentzGroupIsGroup
detRep
β€”β€”
detRep_on_connected_component πŸ“–mathematicalLorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
lorentzGroupIsGroup
detRep
β€”det_on_connected_component
det_eq_one_or_neg_one πŸ“–mathematicalβ€”LorentzGroupβ€”minkowskiMatrix.det_dual
mem_iff_self_mul_dual
det_of_joined πŸ“–mathematicalβ€”LorentzGroupβ€”det_on_connected_component
det_on_connected_component πŸ“–β€”LorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
β€”β€”instDiscreteTopologyMultiplicativeZModOfNatNat
instDiscreteTopologyMultiplicativeZModOfNatNat πŸ“–mathematicalβ€”instTopologicalSpaceMultiplicativeZModOfNatNatβ€”β€”
instIsTopologicalGroupMultiplicativeZModOfNatNat πŸ“–mathematicalβ€”instTopologicalSpaceMultiplicativeZModOfNatNatβ€”instDiscreteTopologyMultiplicativeZModOfNatNat
isProper_id πŸ“–mathematicalβ€”IsProper
LorentzGroup
lorentzGroupIsGroup
β€”β€”
isProper_iff πŸ“–mathematicalβ€”IsProper
LorentzGroup
lorentzGroupIsGroup
detRep
β€”detRep_apply
detContinuous_eq_iff_det_eq
isProper_mul πŸ“–mathematicalIsProperLorentzGroup
lorentzGroupIsGroup
β€”IsProper.eq_1
lorentzGroupIsGroup_mul_coe
isProper_on_connected_component πŸ“–mathematicalLorentzGroup
instTopologicalSpaceElemMatrixSumFinOfNatNatRealLorentzGroup
IsProperβ€”det_on_connected_component

---

← Back to Index