Documentation Verification Report

Basic

πŸ“ Source: PhysLean/Relativity/Tensors/Basic.lean

Statistics

MetricCount
DefinitionsTensor, ComponentIdx, cast, PermCond, inv, toEquiv, toHom, actionP, basisVector, component, componentMap, drop, instSMul, permP, toTensor, update, actionT, basis, componentMap, instTopologicalSpace, ofComponents, permT, toField
23
Theoremscongr_right, apply_inv_apply, auto, comp, inv_apply_apply, inv_perserve_color, ofHom, on_id, on_id_symm, preserve_color, symm, actionP_eq, componentMap_apply, component_basisVector, component_eq, component_eq_drop, component_update_add, component_update_smul, congr_mid, congr_right, drop_actionP, map_map_apply, map_mid_move_left, permP_basisVector, permP_congr, permP_id_self, permP_permP, toTensor_apply, toTensor_update_add, toTensor_update_smul, update_drop_self, update_same, update_succAbove_apply, update_succAbove_drop, ΞΌ_toTensor_tmul_toTensor, actionT_add, actionT_eq, actionT_neg, actionT_pure, actionT_smul, actionT_zero, basis_apply, basis_repr_pure, componentMap_ofComponents, componentMap_pure, fin_cast_permCond, finrank_tensor_eq, induction_on_basis, induction_on_pure, instFiniteDimensional, instIsTopologicalAddGroup, ofComponents_componentMap, permT_basis_repr_symm_apply, permT_congr, permT_congr_eq_id, permT_congr_eq_id', permT_eq_zero_iff, permT_equivariant, permT_id_self, permT_permT, permT_pure, toField_basis_default, toField_default, toField_eq_repr, toField_equivariant, toField_pure
66
Total89

TensorSpecies

Definitions

NameCategoryTheorems
Tensor πŸ“–CompOp
272 mathmath: realLorentzTensor.prodT_toComplex, Tensorial.basis_map_prod, complexLorentzTensor.contrT_ofRat_eq_sum_dropPairSection, complexLorentzTensor.rightMetric_eq_basis, complexLorentzTensor.contrMetric_contr_coMetric, Tensor.prodT_basis_repr_apply, PauliMatrix.pauliCo_contr_pauliContr, Tensor.contrT_fromSingleT_fromPairT, dual_unitTensor_eq_permT_unitTensor, Tensor.permT_basis_repr_symm_apply, Tensor.actionT_smul, Electromagnetism.ElectromagneticPotential.toFieldStrength_antisymmetric, complexLorentzTensor.coContrUnit_eq_basis, PauliMatrix.smul_pauliCoDown, complexLorentzTensor.coContrUnit_eq_complexCoBasis_complexContrBasis, complexLorentzTensor.altLeftLeftUnit_eq_ofRat, contrT_unitTensor_dual_single, complexLorentzTensor.altLeftMetric_contr_leftMetric, Lorentz.CoVector.toTensor_symm_pure, complexLorentzTensor.altLeftMetric_eq_basis, Electromagnetism.DistElectromagneticPotential.fieldStrengthAux_tensor_basis_eq_basis, Tensor.actionT_fromConst, Lorentz.CoVector.tensor_basis_repr_toTensor_apply, Tensor.contrT_congr, Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_tensor_basis_repr, complexLorentzTensor.rightAltRightUnit_eq_fromPairT, realLorentzTensor.toComplex_injective, realLorentzTensor.contrT_toComplex, Electromagnetism.ElectromagneticPotential.gradFreeCurrentPotential_eq_tensor, complexLorentzTensor.contrMetric_symm, complexLorentzTensor.altLeftMetric_antisymm, SpaceTime.distTensorDeriv_toTensor_basis_repr, unitTensor_invariant, PauliMatrix.toTensor_smul_eq_self, PauliMatrix.pauliCoDown_eq_ofRat, Tensor.contrT_comm, complexLorentzTensor.altLeftMetric_eq_fromPairT, complexLorentzTensor.altLeftMetric_eq_ofRat, Tensor.permT_id_self, metricTensor_congr, Tensor.Pure.evalP_update_smul, Tensor.permT_equivariant, complexLorentzTensor.rightAltRightUnit_eq_basis, Lorentz.Vector.toTensor_basis_eq_tensor_basis, Tensor.basis_repr_pure, complexLorentzTensor.leftMetric_contr_altLeftMetric, Tensorial.self_toTensor_apply, complexLorentzTensor.leftAltLeftUnit_eq_leftBasis_altLeftBasis, complexLorentzTensor.rightAltRightUnit_eq_rightBasis_altRightBasis, Tensorial.toTensor_smul, Electromagnetism.DistElectromagneticPotential.gradLagrangian_eq_tensor, complexLorentzTensor.contrMetric_eq_complexContrBasisFin4, SpaceTime.tensorDeriv_toTensor_basis_repr, complexLorentzTensor.coMetric_symm, complexLorentzTensor.ofRat_basis_repr_apply, complexLorentzTensor.altRightMetric_eq_altRightBasis, complexLorentzTensor.altLeftLeftUnit_eq_basis, PauliMatrix.pauliCoDown_trace_pauliCo, Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_tensor, realLorentzTensor.contrMetric_repr_apply_eq_minkowskiMatrix, complexLorentzTensor.actionT_altRightRightUnit, Electromagnetism.DistElectromagneticPotential.gradKineticTerm_eq_distTensorDeriv, Tensorial.smul_eq, complexLorentzTensor.actionT_rightAltRightUnit, complexLorentzTensor.actionT_coContrUnit, contrT_metricTensor_metricTensor, Tensor.fromDualMap_apply, realLorentzTensor.contrMetric_eq_fromPairT, complexLorentzTensor.actionT_altLeftLeftUnit, permT_fromPairTContr_metric_metric, complexLorentzTensor.permT_ofRat, complexLorentzTensor.rightMetric_eq_rightBasis, complexLorentzTensor.contrMetric_eq_complexContrBasis, Tensor.prodT_assoc', Tensor.actionT_fromTripleT, complexLorentzTensor.coContrUnit_eq_ofRat, complexLorentzTensor.actionT_rightMetric, Tensor.fromTripleT_apply_basis, Tensor.permT_congr_eq_id', complexLorentzTensor.coMetric_contr_contrMetric, Tensor.fromPairTContr_tmul_tmul, complexLorentzTensor.leftAltLeftUnit_eq_fromPairT, Electromagnetism.DistElectromagneticPotential.isExterma_iff_tensor, Tensor.fromPairT_basis_repr, complexLorentzTensor.leftMetric_eq_basis, Tensor.permT_congr_eq_id, Tensor.fromPairT_apply_basis_repr, PauliMatrix.smul_pauliCo, complexLorentzTensor.altRightMetric_eq_ofRat, Tensor.contrT_permT, Tensor.Pure.contrP_symm, complexLorentzTensor.coContrUnit_symm, complexLorentzTensor.contrMetric_eq_fromPairT, Tensor.permT_congr, Lorentz.Vector.tensor_basis_repr_toTensor_apply, PauliMatrix.pauliContrDown_ofRat, Tensor.contrT_equivariant, Tensor.contrT_prodT_snd, Lorentz.CoVector.basis_eq_map_tensor_basis, Tensor.toField_default, Electromagnetism.DistElectromagneticPotential.fieldStrengthAux_eq_add, complexLorentzTensor.coContrUnit_eq_complexCoBasisFin4_complexContrBasisFin4, complexLorentzTensor.leftAltLeftUnit_eq_ofRat, complexLorentzTensor.altRightRightUnit_eq_ofRat, realLorentzTensor.actionT_contrMetric, Lorentz.CoVector.tensor_basis_map_eq_basis_reindex, complexLorentzTensor.coMetric_eq_ofRat, complexLorentzTensor.leftMetric_eq_leftBasis, Electromagnetism.DistElectromagneticPotential.toTensor_deriv_basis_repr_apply, Tensor.toDualMap_eq_permT_fromDualMap, complexLorentzTensor.basis_eq_ofRat, Tensor.actionT_eq, Tensor.TensorInt.basis_repr_apply, fromPairTContr_metric_metric_eq_permT_unit, complexLorentzTensor.altRightRightUnit_eq_fromPairT, realLorentzTensor.toComplex_eq_sum_basis, Tensor.fromTripleT_tmul, Electromagnetism.ElectromagneticPotential.toTensor_toFieldStrength, complexLorentzTensor.contrCoUnit_eq_ofRat, metricTensor_invariant, Tensor.basis_eq_tensorInt, Tensor.toField_equivariant, Tensor.toField_pure, Tensor.fromPairT_comm, complexLorentzTensor.leftMetric_antisymm, complexLorentzTensor.actionT_contrMetric, complexLorentzTensor.altRightMetric_eq_basis, realLorentzTensor.actionT_coMetric, Tensor.instFiniteDimensional, realLorentzTensor.permT_toComplex, Tensor.contrT_basis_repr_apply_eq_sum_fin, realLorentzTensor.coMetric_repr_apply_eq_minkowskiMatrix, Tensor.fromDualMap_eq_permT_toDualMap, Tensor.actionT_add, complexLorentzTensor.coMetric_eq_basis, Tensor.permT_permT, complexLorentzTensor.rightMetric_eq_ofRat, unitTensor_congr, Electromagnetism.ElectromagneticPotential.toTensor_toFieldStrength_basis_repr, Tensor.Pure.contrP_update_add, Tensor.toDualMap_apply, Tensor.contrT_fromSingleT_fromSingleT, realLorentzTensor.evalT_toComplex, Tensor.actionT_fromPairT, complexLorentzTensor.rightAltRightUnit_eq_ofRat, Lorentz.CoVector.toTensor_symm_basis, complexLorentzTensor.altRightMetric_eq_fromPairT, complexLorentzTensor.altRightRightUnit_eq_altRightBasis_rightBasis, complexLorentzTensor.contrT_ofRat, Tensor.toDualMap_fromDualMap, unitTensor_eq_permT_dual, complexLorentzTensor.actionT_leftMetric, contrT_single_unitTensor, complexLorentzTensor.contrCoUnit_symm, complexLorentzTensor.altRightMetric_contr_rightMetric, realLorentzTensor.contrT_basis_repr_apply_eq_dropPairSection, PauliMatrix.smul_pauliContrDown, Tensor.actionT_zero, realLorentzTensor.toComplex_equivariant, Tensor.toDual_equivariant, complexLorentzTensor.altLeftLeftUnit_eq_altLeftBasis_leftBasis, realLorentzTensor.toComplex_eq_zero_iff, complexLorentzTensor.actionT_coMetric, Tensor.toField_eq_repr, Lorentz.Vector.toTensor_symm_basis, Tensor.basis_apply, Tensor.Pure.toTensor_update_smul, complexLorentzTensor.coContrUnit_eq_fromPairT, PauliMatrix.toTensor_symm_apply, Electromagnetism.ElectromagneticPotential.toFieldStrength_tensor_basis_eq_basis, Electromagnetism.DistElectromagneticPotential.gradFreeCurrentPotential_eq_tensor, Tensorial.smul_toTensor_symm, complexLorentzTensor.contrCoUnit_eq_complexContrBasisFin4_complexCoBasisFin4, Tensor.contrT_pure, Tensor.actionT_neg, realLorentzTensor.coMetric_eq_fromPairT, Electromagnetism.DistElectromagneticPotential.toTensor_fieldStrengthAux, complexLorentzTensor.actionT_leftAltLeftUnit, Tensor.instIsTopologicalAddGroup, Tensor.fromDualMap_toDualMap, Tensor.fromConstPair_whiskerLeft, complexLorentzTensor.contrMetric_eq_basis, Electromagnetism.ElectromagneticPotential.isExtrema_iff_tensors, complexLorentzTensor.contrCoUnit_eq_basis, Tensor.fromPairT_contr_fromPairT_eq_fromPairTContr, Tensor.actionT_fromConstPair, unit_fromSingleTContrFromPairT_eq_fromSingleT, Electromagnetism.ElectromagneticPotential.gradKineticTerm_eq_tensorDeriv, Lorentz.Vector.toTensor_symm_apply, complexLorentzTensor.rightMetric_antisymm, Tensor.toField_basis_default, Electromagnetism.ElectromagneticPotential.toTensor_deriv_basis_repr_apply, PauliMatrix.toTensor_symm_basis, Tensor.Pure.contrP_equivariant, Tensor.componentMap_ofComponents, Tensor.Pure.prodP_contrP_snd, complexLorentzTensor.contrCoUnit_eq_fromPairT, complexLorentzTensor.altRightMetric_antisymm, complexLorentzTensor.leftMetric_eq_fromPairT, Tensor.fromConstPair_braid, PauliMatrix.toTensor_basis_expand, complexLorentzTensor.rightMetric_eq_fromPairT, complexLorentzTensor.coMetric_eq_complexCoBasisFin4, Tensor.Pure.evalP_update_add, Tensor.prodT_contrT_snd, Tensor.fromSingleT_map, complexLorentzTensor.altLeftMetric_eq_altLeftBasis, Tensor.prodIndexEquiv_symm_pure, Tensor.fromPairT_contr_fromPairT_eq_fromPairTContr_tmul, Tensor.componentMap_pure, complexLorentzTensor.coMetric_eq_complexCoBasis, Tensor.fromTripleT_basis_repr, Tensor.contrT_basis_repr_apply, PauliMatrix.auliContrDown_pauliContr_mul_add, complexLorentzTensor.contrCoUnit_eq_complexContrBasis_complexCoBasis, Lorentz.CoVector.toTensor_symm_apply, complexLorentzTensor.leftMetric_eq_ofRat, contrT_dual_metricTensor_metricTensor, complexLorentzTensor.leftAltLeftUnit_eq_basis, contrT_metricTensor_metricTensor_eq_dual_unit, complexLorentzTensor.actionT_altRightMetric, Tensor.prodT_swap, Electromagnetism.ElectromagneticPotential.toFieldStrength_eq_add, Tensorial.toTensor_tprod, Tensor.actionT_pure, Lorentz.CoVector.toTensor_basis_eq_tensor_basis, Tensor.prodT_permT_right, PauliMatrix.toTensor_eq_asConsTensor, complexLorentzTensor.actionT_contrCoUnit, Tensor.prodT_assoc, Tensor.contrT_symm, complexLorentzTensor.rightAltRightUnit_symm, complexLorentzTensor.contrMetric_eq_ofRat, Tensor.ofComponents_componentMap, complexLorentzTensor.prodT_ofRat_ofRat, complexLorentzTensor.coMetric_eq_fromPairT, Tensor.prodT_pure, PauliMatrix.toTensor_eq_ofRat, Tensor.finrank_tensor_eq, Tensor.fromSingleT_eq_pureT, Tensor.fromSingleTContrFromPairT_tmul, PauliMatrix.pauliContr_mul_pauliContrDown_add, Tensor.prodT_permT_left, Tensor.Pure.toTensor_update_add, complexLorentzTensor.altLeftLeftUnit_eq_fromPairT, complexLorentzTensor.altLeftLeftUnit_symm, Tensor.Pure.contrP_update_smul, complexLorentzTensor.leftAltLeftUnit_symm, complexLorentzTensor.altRightRightUnit_eq_basis, Tensor.basis_prod_eq, Tensor.fromSingleT_symm_pure, Lorentz.Vector.toTensor_symm_pure, Tensor.fromPairT_map_right, Lorentz.Vector.tensor_basis_map_eq_basis_reindex, complexLorentzTensor.rightMetric_contr_altRightMetric, Tensor.prodT_equivariant, complexLorentzTensor.altRightRightUnit_symm, PauliMatrix.pauliCo_eq_ofRat, Tensor.permT_pure, realLorentzTensor.contrT_basis_repr_apply_eq_fin, Tensor.actionT_fromConstTriple, Tensor.prodT_default_right, Tensor.fromPairT_tmul, Tensor.actionT_fromSingleT, Tensor.permT_eq_zero_iff, Tensorial.basis_toTensor_apply, Tensor.prodT_basis, Lorentz.Vector.basis_eq_map_tensor_basis, PauliMatrix.pauliCo_trace_pauliCoDown, Electromagnetism.DistElectromagneticPotential.toTensor_fieldStrengthAux_basis_repr, complexLorentzTensor.actionT_altLeftMetric, Tensor.fromSingleT_contr_fromPairT_tmul

TensorSpecies.Tensor

Definitions

NameCategoryTheorems
ComponentIdx πŸ“–CompOp
94 mathmath: Pure.componentMap_apply, TensorSpecies.Tensorial.basis_map_prod, complexLorentzTensor.contrT_ofRat_eq_sum_dropPairSection, ComponentIdx.DropPairSection.ofFin_mem_dropPairEmbSection, complexLorentzTensor.rightMetric_eq_basis, prodT_basis_repr_apply, permT_basis_repr_symm_apply, complexLorentzTensor.coContrUnit_eq_basis, complexLorentzTensor.altLeftLeftUnit_eq_ofRat, Lorentz.CoVector.toTensor_symm_pure, complexLorentzTensor.altLeftMetric_eq_basis, Electromagnetism.DistElectromagneticPotential.fieldStrengthAux_tensor_basis_eq_basis, Lorentz.CoVector.tensor_basis_repr_toTensor_apply, Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_tensor_basis_repr, SpaceTime.distTensorDeriv_toTensor_basis_repr, PauliMatrix.pauliCoDown_eq_ofRat, complexLorentzTensor.altLeftMetric_eq_ofRat, complexLorentzTensor.rightAltRightUnit_eq_basis, Lorentz.Vector.toTensor_basis_eq_tensor_basis, basis_repr_pure, SpaceTime.tensorDeriv_toTensor_basis_repr, complexLorentzTensor.ofRat_basis_repr_apply, complexLorentzTensor.altLeftLeftUnit_eq_basis, realLorentzTensor.contrMetric_repr_apply_eq_minkowskiMatrix, Pure.prodP_component, complexLorentzTensor.permT_ofRat, complexLorentzTensor.coContrUnit_eq_ofRat, fromTripleT_apply_basis, fromPairT_basis_repr, complexLorentzTensor.leftMetric_eq_basis, fromPairT_apply_basis_repr, complexLorentzTensor.altRightMetric_eq_ofRat, Lorentz.Vector.tensor_basis_repr_toTensor_apply, PauliMatrix.pauliContrDown_ofRat, Lorentz.CoVector.basis_eq_map_tensor_basis, complexLorentzTensor.leftAltLeftUnit_eq_ofRat, complexLorentzTensor.altRightRightUnit_eq_ofRat, Lorentz.CoVector.tensor_basis_map_eq_basis_reindex, complexLorentzTensor.coMetric_eq_ofRat, Electromagnetism.DistElectromagneticPotential.toTensor_deriv_basis_repr_apply, complexLorentzTensor.basis_eq_ofRat, TensorInt.basis_repr_apply, realLorentzTensor.toComplex_eq_sum_basis, complexLorentzTensor.contrCoUnit_eq_ofRat, basis_eq_tensorInt, complexLorentzTensor.altRightMetric_eq_basis, contrT_basis_repr_apply_eq_sum_fin, realLorentzTensor.coMetric_repr_apply_eq_minkowskiMatrix, complexLorentzTensor.coMetric_eq_basis, complexLorentzTensor.rightMetric_eq_ofRat, Electromagnetism.ElectromagneticPotential.toTensor_toFieldStrength_basis_repr, complexLorentzTensor.rightAltRightUnit_eq_ofRat, Lorentz.CoVector.toTensor_symm_basis, complexLorentzTensor.contrT_ofRat, realLorentzTensor.contrT_basis_repr_apply_eq_dropPairSection, toField_eq_repr, Lorentz.Vector.toTensor_symm_basis, basis_apply, PauliMatrix.toTensor_symm_apply, Electromagnetism.ElectromagneticPotential.toFieldStrength_tensor_basis_eq_basis, complexLorentzTensor.contrMetric_eq_basis, ComponentIdx.DropPairSection.ofFinEquiv_apply_fst, ComponentIdx.DropPairSection.ofFinEquiv_apply_snd, complexLorentzTensor.contrCoUnit_eq_basis, ComponentIdx.DropPairSection.mem_self_of_dropPair, Lorentz.Vector.toTensor_symm_apply, toField_basis_default, Electromagnetism.ElectromagneticPotential.toTensor_deriv_basis_repr_apply, PauliMatrix.toTensor_symm_basis, componentMap_ofComponents, PauliMatrix.toTensor_basis_expand, componentMap_pure, fromTripleT_basis_repr, contrT_basis_repr_apply, Lorentz.CoVector.toTensor_symm_apply, complexLorentzTensor.leftMetric_eq_ofRat, complexLorentzTensor.leftAltLeftUnit_eq_basis, Lorentz.CoVector.toTensor_basis_eq_tensor_basis, complexLorentzTensor.contrMetric_eq_ofRat, ofComponents_componentMap, complexLorentzTensor.prodT_ofRat_ofRat, PauliMatrix.toTensor_eq_ofRat, Pure.component_basisVector, complexLorentzTensor.altRightRightUnit_eq_basis, basis_prod_eq, Lorentz.Vector.toTensor_symm_pure, Lorentz.Vector.tensor_basis_map_eq_basis_reindex, PauliMatrix.pauliCo_eq_ofRat, realLorentzTensor.contrT_basis_repr_apply_eq_fin, ComponentIdx.DropPairSection.mem_iff_apply_dropPairEmb_eq, TensorSpecies.Tensorial.basis_toTensor_apply, prodT_basis, Lorentz.Vector.basis_eq_map_tensor_basis, Electromagnetism.DistElectromagneticPotential.toTensor_fieldStrengthAux_basis_repr
PermCond πŸ“–MathDef
62 mathmath: complexLorentzTensor.contrMetric_contr_coMetric, PauliMatrix.pauliCo_contr_pauliContr, contrT_fromSingleT_fromPairT, Electromagnetism.ElectromagneticPotential.toFieldStrength_antisymmetric, TensorSpecies.contrT_unitTensor_dual_single, complexLorentzTensor.altLeftMetric_contr_leftMetric, complexLorentzTensor.contrMetric_symm, complexLorentzTensor.altLeftMetric_antisymm, PermCond.ofHom, PermCond.on_id, permT_id_self, TensorSpecies.metricTensor_congr, Pure.dropPairEmb_permCond_prod, complexLorentzTensor.leftMetric_contr_altLeftMetric, Electromagnetism.DistElectromagneticPotential.gradLagrangian_eq_tensor, complexLorentzTensor.coMetric_symm, PauliMatrix.pauliCoDown_trace_pauliCo, Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_tensor, Pure.prodP_zero_right_permCond, Electromagnetism.DistElectromagneticPotential.gradKineticTerm_eq_distTensorDeriv, fromDualMap_apply, fin_cast_permCond, complexLorentzTensor.coMetric_contr_contrMetric, Electromagnetism.DistElectromagneticPotential.isExterma_iff_tensor, Pure.contrP_symm, complexLorentzTensor.coContrUnit_symm, Electromagnetism.DistElectromagneticPotential.fieldStrengthAux_eq_add, toDualMap_eq_permT_fromDualMap, prodAssocMap'_permCond, Electromagnetism.ElectromagneticPotential.toTensor_toFieldStrength, complexLorentzTensor.leftMetric_antisymm, fromDualMap_eq_permT_toDualMap, TensorSpecies.unitTensor_congr, toDualMap_apply, TensorSpecies.contrT_single_unitTensor, complexLorentzTensor.contrCoUnit_symm, complexLorentzTensor.altRightMetric_contr_rightMetric, Electromagnetism.DistElectromagneticPotential.toTensor_fieldStrengthAux, Pure.permP_id_self, Electromagnetism.ElectromagneticPotential.isExtrema_iff_tensors, fromPairT_contr_fromPairT_eq_fromPairTContr, Electromagnetism.ElectromagneticPotential.gradKineticTerm_eq_tensorDeriv, complexLorentzTensor.rightMetric_antisymm, complexLorentzTensor.altRightMetric_antisymm, prodSwapMap_permCond, fromSingleT_map, fromPairT_contr_fromPairT_eq_fromPairTContr_tmul, PauliMatrix.auliContrDown_pauliContr_mul_add, TensorSpecies.contrT_dual_metricTensor_metricTensor, Electromagnetism.ElectromagneticPotential.toFieldStrength_eq_add, contrT_symm, complexLorentzTensor.rightAltRightUnit_symm, prodAssocMap_permCond, PauliMatrix.pauliContr_mul_pauliContrDown_add, complexLorentzTensor.altLeftLeftUnit_symm, complexLorentzTensor.leftAltLeftUnit_symm, fromPairT_map_right, complexLorentzTensor.rightMetric_contr_altRightMetric, complexLorentzTensor.altRightRightUnit_symm, Pure.dropPair_symm, PauliMatrix.pauliCo_trace_pauliCoDown, fromSingleT_contr_fromPairT_tmul
actionT πŸ“–CompOp
22 mathmath: actionT_smul, actionT_fromConst, TensorSpecies.unitTensor_invariant, permT_equivariant, actionT_fromTripleT, contrT_equivariant, realLorentzTensor.actionT_contrMetric, actionT_eq, TensorSpecies.metricTensor_invariant, toField_equivariant, realLorentzTensor.actionT_coMetric, actionT_add, actionT_fromPairT, actionT_zero, toDual_equivariant, actionT_neg, actionT_fromConstPair, Pure.contrP_equivariant, actionT_pure, prodT_equivariant, actionT_fromConstTriple, actionT_fromSingleT
basis πŸ“–CompOp
61 mathmath: TensorSpecies.Tensorial.basis_map_prod, complexLorentzTensor.rightMetric_eq_basis, prodT_basis_repr_apply, permT_basis_repr_symm_apply, complexLorentzTensor.coContrUnit_eq_basis, complexLorentzTensor.altLeftMetric_eq_basis, Electromagnetism.DistElectromagneticPotential.fieldStrengthAux_tensor_basis_eq_basis, Lorentz.CoVector.tensor_basis_repr_toTensor_apply, Electromagnetism.ElectromagneticPotential.fieldStrengthMatrix_eq_tensor_basis_repr, SpaceTime.distTensorDeriv_toTensor_basis_repr, complexLorentzTensor.rightAltRightUnit_eq_basis, Lorentz.Vector.toTensor_basis_eq_tensor_basis, basis_repr_pure, SpaceTime.tensorDeriv_toTensor_basis_repr, complexLorentzTensor.ofRat_basis_repr_apply, complexLorentzTensor.altLeftLeftUnit_eq_basis, realLorentzTensor.contrMetric_repr_apply_eq_minkowskiMatrix, fromTripleT_apply_basis, fromPairT_basis_repr, complexLorentzTensor.leftMetric_eq_basis, fromPairT_apply_basis_repr, Lorentz.Vector.tensor_basis_repr_toTensor_apply, Lorentz.CoVector.basis_eq_map_tensor_basis, Lorentz.CoVector.tensor_basis_map_eq_basis_reindex, Electromagnetism.DistElectromagneticPotential.toTensor_deriv_basis_repr_apply, complexLorentzTensor.basis_eq_ofRat, TensorInt.basis_repr_apply, realLorentzTensor.toComplex_eq_sum_basis, basis_eq_tensorInt, complexLorentzTensor.altRightMetric_eq_basis, contrT_basis_repr_apply_eq_sum_fin, realLorentzTensor.coMetric_repr_apply_eq_minkowskiMatrix, complexLorentzTensor.coMetric_eq_basis, Electromagnetism.ElectromagneticPotential.toTensor_toFieldStrength_basis_repr, Lorentz.CoVector.toTensor_symm_basis, realLorentzTensor.contrT_basis_repr_apply_eq_dropPairSection, toField_eq_repr, Lorentz.Vector.toTensor_symm_basis, basis_apply, PauliMatrix.toTensor_symm_apply, Electromagnetism.ElectromagneticPotential.toFieldStrength_tensor_basis_eq_basis, complexLorentzTensor.contrMetric_eq_basis, complexLorentzTensor.contrCoUnit_eq_basis, Lorentz.Vector.toTensor_symm_apply, toField_basis_default, Electromagnetism.ElectromagneticPotential.toTensor_deriv_basis_repr_apply, PauliMatrix.toTensor_symm_basis, PauliMatrix.toTensor_basis_expand, fromTripleT_basis_repr, contrT_basis_repr_apply, Lorentz.CoVector.toTensor_symm_apply, complexLorentzTensor.leftAltLeftUnit_eq_basis, Lorentz.CoVector.toTensor_basis_eq_tensor_basis, complexLorentzTensor.altRightRightUnit_eq_basis, basis_prod_eq, Lorentz.Vector.tensor_basis_map_eq_basis_reindex, realLorentzTensor.contrT_basis_repr_apply_eq_fin, TensorSpecies.Tensorial.basis_toTensor_apply, prodT_basis, Lorentz.Vector.basis_eq_map_tensor_basis, Electromagnetism.DistElectromagneticPotential.toTensor_fieldStrengthAux_basis_repr
componentMap πŸ“–CompOp
3 mathmath: componentMap_ofComponents, componentMap_pure, ofComponents_componentMap
instTopologicalSpace πŸ“–CompOp
1 mathmath: instIsTopologicalAddGroup
ofComponents πŸ“–CompOp
2 mathmath: componentMap_ofComponents, ofComponents_componentMap
permT πŸ“–CompOp
87 mathmath: complexLorentzTensor.contrMetric_contr_coMetric, PauliMatrix.pauliCo_contr_pauliContr, contrT_fromSingleT_fromPairT, TensorSpecies.dual_unitTensor_eq_permT_unitTensor, permT_basis_repr_symm_apply, Electromagnetism.ElectromagneticPotential.toFieldStrength_antisymmetric, TensorSpecies.contrT_unitTensor_dual_single, complexLorentzTensor.altLeftMetric_contr_leftMetric, contrT_congr, Electromagnetism.ElectromagneticPotential.gradFreeCurrentPotential_eq_tensor, complexLorentzTensor.contrMetric_symm, complexLorentzTensor.altLeftMetric_antisymm, contrT_comm, permT_id_self, TensorSpecies.metricTensor_congr, permT_equivariant, complexLorentzTensor.leftMetric_contr_altLeftMetric, Electromagnetism.DistElectromagneticPotential.gradLagrangian_eq_tensor, complexLorentzTensor.coMetric_symm, PauliMatrix.pauliCoDown_trace_pauliCo, Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_tensor, Electromagnetism.DistElectromagneticPotential.gradKineticTerm_eq_distTensorDeriv, TensorSpecies.contrT_metricTensor_metricTensor, fromDualMap_apply, TensorSpecies.permT_fromPairTContr_metric_metric, complexLorentzTensor.permT_ofRat, prodT_assoc', permT_congr_eq_id', complexLorentzTensor.coMetric_contr_contrMetric, Electromagnetism.DistElectromagneticPotential.isExterma_iff_tensor, permT_congr_eq_id, contrT_permT, Pure.contrP_symm, complexLorentzTensor.coContrUnit_symm, permT_congr, contrT_prodT_snd, Electromagnetism.DistElectromagneticPotential.fieldStrengthAux_eq_add, toDualMap_eq_permT_fromDualMap, TensorSpecies.fromPairTContr_metric_metric_eq_permT_unit, fromTripleT_tmul, Electromagnetism.ElectromagneticPotential.toTensor_toFieldStrength, fromPairT_comm, complexLorentzTensor.leftMetric_antisymm, realLorentzTensor.permT_toComplex, fromDualMap_eq_permT_toDualMap, permT_permT, TensorSpecies.unitTensor_congr, toDualMap_apply, TensorSpecies.unitTensor_eq_permT_dual, TensorSpecies.contrT_single_unitTensor, complexLorentzTensor.contrCoUnit_symm, complexLorentzTensor.altRightMetric_contr_rightMetric, Electromagnetism.DistElectromagneticPotential.gradFreeCurrentPotential_eq_tensor, Electromagnetism.DistElectromagneticPotential.toTensor_fieldStrengthAux, fromConstPair_whiskerLeft, Electromagnetism.ElectromagneticPotential.isExtrema_iff_tensors, fromPairT_contr_fromPairT_eq_fromPairTContr, Electromagnetism.ElectromagneticPotential.gradKineticTerm_eq_tensorDeriv, complexLorentzTensor.rightMetric_antisymm, Pure.prodP_contrP_snd, complexLorentzTensor.altRightMetric_antisymm, fromConstPair_braid, prodT_contrT_snd, fromSingleT_map, fromPairT_contr_fromPairT_eq_fromPairTContr_tmul, PauliMatrix.auliContrDown_pauliContr_mul_add, TensorSpecies.contrT_dual_metricTensor_metricTensor, TensorSpecies.contrT_metricTensor_metricTensor_eq_dual_unit, prodT_swap, Electromagnetism.ElectromagneticPotential.toFieldStrength_eq_add, prodT_permT_right, prodT_assoc, contrT_symm, complexLorentzTensor.rightAltRightUnit_symm, PauliMatrix.pauliContr_mul_pauliContrDown_add, prodT_permT_left, complexLorentzTensor.altLeftLeftUnit_symm, complexLorentzTensor.leftAltLeftUnit_symm, fromPairT_map_right, complexLorentzTensor.rightMetric_contr_altRightMetric, complexLorentzTensor.altRightRightUnit_symm, permT_pure, prodT_default_right, fromPairT_tmul, permT_eq_zero_iff, PauliMatrix.pauliCo_trace_pauliCoDown, fromSingleT_contr_fromPairT_tmul
toField πŸ“–CompOp
5 mathmath: toField_default, toField_equivariant, toField_pure, toField_eq_repr, toField_basis_default

Theorems

NameKindAssumesProvesValidatesDepends On
actionT_add πŸ“–mathematicalβ€”TensorSpecies.Tensor
actionT
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”actionT_eq
actionT_eq πŸ“–mathematicalβ€”TensorSpecies.Tensor
actionT
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”
actionT_neg πŸ“–mathematicalβ€”TensorSpecies.Tensor
actionT
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”actionT_eq
actionT_pure πŸ“–mathematicalβ€”TensorSpecies.Tensor
actionT
Pure.toTensor
Pure
Pure.instSMul
β€”actionT_eq
Pure.toTensor.eq_1
IndexNotation.OverColor.lift.toRep_ρ_tprod
actionT_smul πŸ“–mathematicalβ€”TensorSpecies.Tensor
actionT
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”actionT_eq
actionT_zero πŸ“–mathematicalβ€”TensorSpecies.Tensor
actionT
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”
basis_apply πŸ“–mathematicalβ€”ComponentIdx
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
basis
Pure.toTensor
Pure.basisVector
β€”β€”
basis_repr_pure πŸ“–mathematicalβ€”ComponentIdx
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
basis
Pure.toTensor
Pure.component
β€”componentMap_pure
Pure.componentMap_apply
componentMap_ofComponents πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
ComponentIdx
componentMap
ofComponents
β€”componentMap_pure
Pure.componentMap_apply
Pure.component_basisVector
componentMap_pure πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
ComponentIdx
componentMap
Pure.toTensor
TensorSpecies.FD
Pure.componentMap
β€”Pure.componentMap_apply
fin_cast_permCond πŸ“–mathematicalβ€”PermCondβ€”β€”
finrank_tensor_eq πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
TensorSpecies.repDim
β€”β€”
induction_on_basis πŸ“–β€”ComponentIdx
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
basis
β€”β€”β€”
induction_on_pure πŸ“–β€”Pure.toTensor
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”β€”
instFiniteDimensional πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”
instIsTopologicalAddGroup πŸ“–mathematicalβ€”TensorSpecies.Tensor
instTopologicalSpace
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”
ofComponents_componentMap πŸ“–mathematicalβ€”TensorSpecies.Tensor
ComponentIdx
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
ofComponents
componentMap
β€”induction_on_pure
componentMap_pure
Pure.componentMap_apply
Pure.component_eq
Pure.toTensor.eq_1
permT_basis_repr_symm_apply πŸ“–mathematicalPermCondComponentIdx
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
basis
permT
TensorSpecies.repDim
PermCond.inv
PermCond.inv_perserve_color
β€”PermCond.inv_perserve_color
induction_on_basis
basis_apply
permT_pure
PermCond.preserve_color
Pure.permP_basisVector
PermCond.inv_apply_apply
PermCond.apply_inv_apply
permT_congr πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
β€”β€”
permT_congr_eq_id πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
β€”permT_id_self
permT_congr_eq_id' πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
β€”permT_id_self
permT_eq_zero_iff πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
β€”PermCond.symm
PermCond.comp
permT_permT
permT_congr_eq_id'
PermCond.inv_apply_apply
permT_equivariant πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
actionT
β€”β€”
permT_id_self πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
PermCond
β€”induction_on_pure
permT_pure
Pure.permP_id_self
permT_permT πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
PermCond.comp
β€”PermCond.comp
induction_on_basis
basis_apply
permT_pure
PermCond.preserve_color
Pure.permP_basisVector
permT_congr
permT_pure πŸ“–mathematicalPermCondTensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
permT
Pure.toTensor
Pure.permP
β€”IndexNotation.OverColor.Hom.toEquiv_comp_inv_apply
IndexNotation.OverColor.lift.map_tprod
toField_basis_default πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
toField
ComponentIdx
basis
TensorSpecies.repDim
β€”basis_apply
toField_pure
toField_default πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
toField
Pure.toTensor
Pure
TensorSpecies.FD
β€”β€”
toField_eq_repr πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
toField
ComponentIdx
basis
TensorSpecies.repDim
β€”toField_basis_default
toField_equivariant πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
toField
actionT
β€”induction_on_pure
actionT_pure
toField_pure
actionT_smul
actionT_add
toField_pure πŸ“–mathematicalβ€”TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
toField
Pure.toTensor
β€”toField_default

TensorSpecies.Tensor.ComponentIdx

Definitions

NameCategoryTheorems
cast πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
congr_right πŸ“–mathematicalβ€”TensorSpecies.repDimβ€”β€”

TensorSpecies.Tensor.PermCond

Definitions

NameCategoryTheorems
inv πŸ“–CompOp
6 mathmath: apply_inv_apply, TensorSpecies.Tensor.permT_basis_repr_symm_apply, inv_apply_apply, complexLorentzTensor.permT_ofRat, symm, inv_perserve_color
toEquiv πŸ“–CompOpβ€”
toHom πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
apply_inv_apply πŸ“–mathematicalTensorSpecies.Tensor.PermCondinvβ€”β€”
auto πŸ“–β€”TensorSpecies.Tensor.PermCondβ€”β€”β€”
comp πŸ“–β€”TensorSpecies.Tensor.PermCondβ€”β€”β€”
inv_apply_apply πŸ“–mathematicalTensorSpecies.Tensor.PermCondinvβ€”β€”
inv_perserve_color πŸ“–mathematicalTensorSpecies.Tensor.PermCondinvβ€”preserve_color
ofHom πŸ“–mathematicalβ€”TensorSpecies.Tensor.PermCond
IndexNotation.OverColor.left
IndexNotation.OverColor.Hom.toEquiv
β€”IndexNotation.OverColor.Hom.toEquiv_symm_apply
on_id πŸ“–mathematicalβ€”TensorSpecies.Tensor.PermCondβ€”β€”
on_id_symm πŸ“–β€”TensorSpecies.Tensor.PermCondβ€”β€”β€”
preserve_color πŸ“–β€”TensorSpecies.Tensor.PermCondβ€”β€”β€”
symm πŸ“–mathematicalTensorSpecies.Tensor.PermCondinvβ€”inv_apply_apply
apply_inv_apply
inv_perserve_color

TensorSpecies.Tensor.Pure

Definitions

NameCategoryTheorems
actionP πŸ“–CompOpβ€”
basisVector πŸ“–CompOp
6 mathmath: prodP_basisVector, TensorSpecies.Tensor.basis_apply, dropPair_basisVector, permP_basisVector, component_basisVector, TensorSpecies.Tensor.prodT_basis
component πŸ“–CompOp
8 mathmath: componentMap_apply, TensorSpecies.Tensor.basis_repr_pure, component_update_add, prodP_component, component_update_smul, component_eq_drop, component_basisVector, component_eq
componentMap πŸ“–CompOp
2 mathmath: componentMap_apply, TensorSpecies.Tensor.componentMap_pure
drop πŸ“–CompOp
4 mathmath: drop_actionP, update_drop_self, component_eq_drop, update_succAbove_drop
instSMul πŸ“–CompOp
7 mathmath: drop_actionP, prodP_equivariant, contrP_equivariant, dropPair_equivariant, actionP_eq, TensorSpecies.Tensor.actionT_pure, contrPCoeff_invariant
permP πŸ“–CompOp
16 mathmath: prodP_assoc, prodP_permP_left, permP_congr, dropPair_comm, prodP_assoc', prodP_zero_right, permP_permP, prodP_swap, prodP_permP_right, permP_id_self, permP_basisVector, dropPair_permP, TensorSpecies.Tensor.permT_pure, dropPair_symm, contrPCoeff_permP, prodP_dropPair
toTensor πŸ“–CompOp
22 mathmath: ΞΌ_toTensor_tmul_toTensor, Lorentz.CoVector.toTensor_symm_pure, TensorSpecies.Tensor.basis_repr_pure, toTensor_apply, TensorSpecies.Tensor.toField_default, TensorSpecies.Tensor.toField_pure, TensorSpecies.Tensor.contrT_fromSingleT_fromSingleT, TensorSpecies.Tensor.basis_apply, toTensor_update_smul, TensorSpecies.Tensor.contrT_pure, prodP_contrP_snd, TensorSpecies.Tensor.prodIndexEquiv_symm_pure, TensorSpecies.Tensor.componentMap_pure, TensorSpecies.Tensor.actionT_pure, TensorSpecies.Tensor.prodT_pure, TensorSpecies.Tensor.fromSingleT_eq_pureT, toTensor_update_add, TensorSpecies.Tensor.fromSingleT_symm_pure, Lorentz.Vector.toTensor_symm_pure, TensorSpecies.Tensor.permT_pure, TensorSpecies.Tensor.prodT_default_right, TensorSpecies.Tensor.prodT_basis
update πŸ“–CompOp
22 mathmath: evalPCoeff_update_self, update_drop_self, evalP_update_smul, contrPCoeff_update_fst_smul, component_update_add, evalPCoeff_update_succAbove, component_update_smul, dropPair_update_snd, contrPCoeff_update_dropPairEmb, contrPCoeff_update_snd_add, contrP_update_add, update_same, toTensor_update_smul, contrPCoeff_update_fst_add, dropPair_update_dropPairEmb, evalP_update_add, update_succAbove_apply, contrPCoeff_update_snd_smul, toTensor_update_add, contrP_update_smul, dropPair_update_fst, update_succAbove_drop

Theorems

NameKindAssumesProvesValidatesDepends On
actionP_eq πŸ“–mathematicalβ€”TensorSpecies.Tensor.Pure
instSMul
TensorSpecies.FD
β€”β€”
componentMap_apply πŸ“–mathematicalβ€”TensorSpecies.FD
TensorSpecies.Tensor.ComponentIdx
componentMap
component
β€”β€”
component_basisVector πŸ“–mathematicalβ€”component
basisVector
TensorSpecies.Tensor.ComponentIdx
TensorSpecies.repDim
β€”component_eq
component_eq πŸ“–mathematicalβ€”component
TensorSpecies.repDim
TensorSpecies.FD
TensorSpecies.basis
β€”β€”
component_eq_drop πŸ“–mathematicalβ€”component
TensorSpecies.repDim
TensorSpecies.FD
TensorSpecies.basis
drop
β€”β€”
component_update_add πŸ“–mathematicalβ€”component
update
TensorSpecies.FD
β€”component_eq_drop
update_same
update_drop_self
component_update_smul πŸ“–mathematicalβ€”component
update
TensorSpecies.FD
β€”component_eq_drop
update_same
update_drop_self
congr_mid πŸ“–mathematicalβ€”TensorSpecies.FDβ€”congr_right
congr_right πŸ“–mathematicalβ€”TensorSpecies.FDβ€”β€”
drop_actionP πŸ“–mathematicalβ€”drop
TensorSpecies.Tensor.Pure
instSMul
β€”drop.eq_1
actionP_eq
map_map_apply πŸ“–mathematicalβ€”TensorSpecies.FDβ€”β€”
map_mid_move_left πŸ“–mathematicalβ€”TensorSpecies.FDβ€”β€”
permP_basisVector πŸ“–mathematicalTensorSpecies.Tensor.PermCondpermP
basisVector
TensorSpecies.repDim
β€”TensorSpecies.Tensor.PermCond.preserve_color
permP_congr πŸ“–mathematicalTensorSpecies.Tensor.PermCondpermPβ€”β€”
permP_id_self πŸ“–mathematicalβ€”permP
TensorSpecies.Tensor.PermCond
β€”β€”
permP_permP πŸ“–mathematicalTensorSpecies.Tensor.PermCondpermP
TensorSpecies.Tensor.PermCond.comp
β€”TensorSpecies.Tensor.PermCond.comp
map_map_apply
toTensor_apply πŸ“–mathematicalβ€”toTensor
TensorSpecies.FD
β€”β€”
toTensor_update_add πŸ“–mathematicalβ€”toTensor
update
TensorSpecies.FD
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”
toTensor_update_smul πŸ“–mathematicalβ€”toTensor
update
TensorSpecies.FD
TensorSpecies.Tensor
IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
β€”β€”
update_drop_self πŸ“–mathematicalβ€”drop
update
β€”β€”
update_same πŸ“–mathematicalβ€”updateβ€”β€”
update_succAbove_apply πŸ“–mathematicalβ€”updateβ€”β€”
update_succAbove_drop πŸ“–mathematicalβ€”drop
update
β€”β€”
ΞΌ_toTensor_tmul_toTensor πŸ“–mathematicalβ€”IndexNotation.OverColor
IndexNotation.instGroupoidOverColor
TensorSpecies.F
IndexNotation.OverColor.instMonoidalCategory
IndexNotation.OverColor.instBraidedCategory
TensorSpecies.F_laxBraided
toTensor
IndexNotation.OverColor.left
TensorSpecies.FD
IndexNotation.OverColor.hom
β€”IndexNotation.OverColor.lift.ΞΌModEquiv.eq_1
toTensor.eq_1
PhysLean.PiTensorProduct.tmulEquiv_tmul_tprod

---

← Back to Index