Documentation Verification Report

Contraction

πŸ“ Source: PhysLean/Relativity/Tensors/ComplexTensor/Vector/Pre/Contraction.lean

Statistics

MetricCount
DefinitionscoContrContraction, contrCoContrBi, contrCoContraction, contrContrCoBi
4
TheoremscoContrContraction_basis, coContrContraction_basis', coContrContraction_hom_tmul, coContrContraction_tmul_symm, contrCoContraction_basis, contrCoContraction_basis', contrCoContraction_hom_tmul, contrCoContraction_tmul_symm
8
Total12

Lorentz

Definitions

NameCategoryTheorems
coContrContraction πŸ“–CompOp
7 mathmath: coContrContraction_apply_metric, contrCoContraction_tmul_symm, coContrContraction_basis', coContrContraction_hom_tmul, coContrContraction_basis, coContrContraction_tmul_symm, contr_contrCoUnit
contrCoContrBi πŸ“–CompOpβ€”
contrCoContraction πŸ“–CompOp
7 mathmath: contrCoContraction_basis, contr_coContrUnit, contrCoContraction_basis', contrCoContraction_hom_tmul, contrCoContraction_tmul_symm, contrCoContraction_apply_metric, coContrContraction_tmul_symm
contrContrCoBi πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
coContrContraction_basis πŸ“–mathematicalβ€”complexCo
complexContr
coContrContraction
complexCoBasisFin4
complexContrBasisFin4
β€”coContrContraction_hom_tmul
complexCoBasis_toFin13β„‚
complexContrBasis_toFin13β„‚
coContrContraction_basis' πŸ“–mathematicalβ€”complexCo
complexContr
coContrContraction
complexCoBasis
complexContrBasis
β€”coContrContraction_hom_tmul
complexCoBasis_toFin13β„‚
complexContrBasis_toFin13β„‚
coContrContraction_hom_tmul πŸ“–mathematicalβ€”complexCo
complexContr
coContrContraction
Coβ„‚Module.toFin13β„‚
Contrβ„‚Module.toFin13β„‚
β€”β€”
coContrContraction_tmul_symm πŸ“–mathematicalβ€”complexCo
complexContr
coContrContraction
contrCoContraction
β€”contrCoContraction_tmul_symm
contrCoContraction_basis πŸ“–mathematicalβ€”complexContr
complexCo
contrCoContraction
complexContrBasisFin4
complexCoBasisFin4
β€”contrCoContraction_hom_tmul
complexContrBasis_toFin13β„‚
complexCoBasis_toFin13β„‚
contrCoContraction_basis' πŸ“–mathematicalβ€”complexContr
complexCo
contrCoContraction
complexContrBasis
complexCoBasis
β€”contrCoContraction_hom_tmul
complexContrBasis_toFin13β„‚
complexCoBasis_toFin13β„‚
contrCoContraction_hom_tmul πŸ“–mathematicalβ€”complexContr
complexCo
contrCoContraction
Contrβ„‚Module.toFin13β„‚
Coβ„‚Module.toFin13β„‚
β€”β€”
contrCoContraction_tmul_symm πŸ“–mathematicalβ€”complexContr
complexCo
contrCoContraction
coContrContraction
β€”contrCoContraction_hom_tmul
coContrContraction_hom_tmul

---

← Back to Index