Documentation Verification Report

Modules

📁 Source: PhysLean/Relativity/Tensors/ComplexTensor/Weyl/Modules.lean

Statistics

MetricCount
DefinitionsAltLeftHandedModule, instAddCommGroup, instAddCommMonoid, instModuleComplex, toFin2ℂ, toFin2ℂEquiv, toFin2ℂFun, val, AltRightHandedModule, instAddCommGroup, instAddCommMonoid, instModuleComplex, toFin2ℂ, toFin2ℂEquiv, toFin2ℂFun, val, LeftHandedModule, instAddCommGroup, instAddCommMonoid, instModuleComplex, toFin2ℂ, toFin2ℂEquiv, toFin2ℂFun, val, RightHandedModule, instAddCommGroup, instAddCommMonoid, instModuleComplex, toFin2ℂ, toFin2ℂEquiv, toFin2ℂFun, val
32
TheoremstoFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val
8
Total40

Fermion

Definitions

NameCategoryTheorems
AltLeftHandedModule 📖CompData
4 mathmath: AltLeftHandedModule.toFin2ℂEquiv_apply, AltLeftHandedModule.toFin2ℂEquiv_symm_apply_val, leftHandedAltEquiv_hom_hom_apply, leftHandedToAlt_hom_apply
AltRightHandedModule 📖CompData
2 mathmath: AltRightHandedModule.toFin2ℂEquiv_symm_apply_val, AltRightHandedModule.toFin2ℂEquiv_apply
LeftHandedModule 📖CompData
4 mathmath: LeftHandedModule.toFin2ℂEquiv_apply, leftHandedAltEquiv_inv_hom_apply, LeftHandedModule.toFin2ℂEquiv_symm_apply_val, leftHandedAltTo_hom_apply
RightHandedModule 📖CompData
2 mathmath: RightHandedModule.toFin2ℂEquiv_symm_apply_val, RightHandedModule.toFin2ℂEquiv_apply

Fermion.AltLeftHandedModule

Definitions

NameCategoryTheorems
instAddCommGroup 📖CompOp
instAddCommMonoid 📖CompOp
4 mathmath: toFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val, Fermion.leftHandedAltEquiv_hom_hom_apply, Fermion.leftHandedToAlt_hom_apply
instModuleComplex 📖CompOp
4 mathmath: toFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val, Fermion.leftHandedAltEquiv_hom_hom_apply, Fermion.leftHandedToAlt_hom_apply
toFin2ℂ 📖CompOp
5 mathmath: Fermion.altLeftBasis_toFin2ℂ, Fermion.altLeftContraction_hom_tmul, Fermion.leftHandedAltEquiv_inv_hom_apply, Fermion.leftAltContraction_hom_tmul, Fermion.leftHandedAltTo_hom_apply
toFin2ℂEquiv 📖CompOp
4 mathmath: toFin2ℂEquiv_apply, toFin2ℂEquiv_symm_apply_val, Fermion.leftHandedAltEquiv_hom_hom_apply, Fermion.leftHandedToAlt_hom_apply
toFin2ℂFun 📖CompOp
1 mathmath: toFin2ℂEquiv_apply
val 📖CompOp
1 mathmath: toFin2ℂEquiv_symm_apply_val

Theorems

NameKindAssumesProvesValidatesDepends On
toFin2ℂEquiv_apply 📖mathematicalFermion.AltLeftHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv
toFin2ℂFun
toFin2ℂEquiv_symm_apply_val 📖mathematicalval
Fermion.AltLeftHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv

Fermion.AltRightHandedModule

Definitions

NameCategoryTheorems
instAddCommGroup 📖CompOp
instAddCommMonoid 📖CompOp
2 mathmath: toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply
instModuleComplex 📖CompOp
2 mathmath: toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply
toFin2ℂ 📖CompOp
3 mathmath: Fermion.rightAltContraction_hom_tmul, Fermion.altRightBasis_toFin2ℂ, Fermion.altRightContraction_hom_tmul
toFin2ℂEquiv 📖CompOp
2 mathmath: toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply
toFin2ℂFun 📖CompOp
1 mathmath: toFin2ℂEquiv_apply
val 📖CompOp
1 mathmath: toFin2ℂEquiv_symm_apply_val

Theorems

NameKindAssumesProvesValidatesDepends On
toFin2ℂEquiv_apply 📖mathematicalFermion.AltRightHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv
toFin2ℂFun
toFin2ℂEquiv_symm_apply_val 📖mathematicalval
Fermion.AltRightHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv

Fermion.LeftHandedModule

Definitions

NameCategoryTheorems
instAddCommGroup 📖CompOp
instAddCommMonoid 📖CompOp
4 mathmath: toFin2ℂEquiv_apply, Fermion.leftHandedAltEquiv_inv_hom_apply, toFin2ℂEquiv_symm_apply_val, Fermion.leftHandedAltTo_hom_apply
instModuleComplex 📖CompOp
4 mathmath: toFin2ℂEquiv_apply, Fermion.leftHandedAltEquiv_inv_hom_apply, toFin2ℂEquiv_symm_apply_val, Fermion.leftHandedAltTo_hom_apply
toFin2ℂ 📖CompOp
5 mathmath: Fermion.altLeftContraction_hom_tmul, Fermion.leftHandedAltEquiv_hom_hom_apply, Fermion.leftAltContraction_hom_tmul, Fermion.leftHandedToAlt_hom_apply, Fermion.leftBasis_toFin2ℂ
toFin2ℂEquiv 📖CompOp
4 mathmath: toFin2ℂEquiv_apply, Fermion.leftHandedAltEquiv_inv_hom_apply, toFin2ℂEquiv_symm_apply_val, Fermion.leftHandedAltTo_hom_apply
toFin2ℂFun 📖CompOp
1 mathmath: toFin2ℂEquiv_apply
val 📖CompOp
1 mathmath: toFin2ℂEquiv_symm_apply_val

Theorems

NameKindAssumesProvesValidatesDepends On
toFin2ℂEquiv_apply 📖mathematicalFermion.LeftHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv
toFin2ℂFun
toFin2ℂEquiv_symm_apply_val 📖mathematicalval
Fermion.LeftHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv

Fermion.RightHandedModule

Definitions

NameCategoryTheorems
instAddCommGroup 📖CompOp
instAddCommMonoid 📖CompOp
2 mathmath: toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply
instModuleComplex 📖CompOp
2 mathmath: toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply
toFin2ℂ 📖CompOp
3 mathmath: Fermion.rightAltContraction_hom_tmul, Fermion.altRightContraction_hom_tmul, Fermion.rightBasis_toFin2ℂ
toFin2ℂEquiv 📖CompOp
2 mathmath: toFin2ℂEquiv_symm_apply_val, toFin2ℂEquiv_apply
toFin2ℂFun 📖CompOp
1 mathmath: toFin2ℂEquiv_apply
val 📖CompOp
1 mathmath: toFin2ℂEquiv_symm_apply_val

Theorems

NameKindAssumesProvesValidatesDepends On
toFin2ℂEquiv_apply 📖mathematicalFermion.RightHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv
toFin2ℂFun
toFin2ℂEquiv_symm_apply_val 📖mathematicalval
Fermion.RightHandedModule
instAddCommMonoid
instModuleComplex
toFin2ℂEquiv

---

← Back to Index