Documentation Verification Report

Contraction

šŸ“ Source: PhysLean/Relativity/Tensors/RealTensor/Vector/Pre/Contraction.lean

Statistics

MetricCount
DefinitionscoCoContract, coContrContract, coModContrModBi, contrCoContract, contrContrContract, contrContrContractField, contrModCoModBi
7
TheoremscoCoContract_hom_tmul, coContrContract_basis, coContrContract_hom_tmul, coContrContract_tmul_symm, contrCoContract_basis, contrCoContract_hom_tmul, contrCoContract_tmul_symm, action_tmul, as_sum, as_sum_toSpace, basis_left, dual_mulVec_left, dual_mulVec_right, ge_abs_inner_product, ge_sub_norm, inl_sq_eq, le_inl_sq, matrix_apply_eq_iff_sub, matrix_apply_stdBasis, matrix_eq_id_iff, matrix_eq_iff_eq_forall, matrix_eq_iff_eq_forall', nondegenerate, on_basis, on_basis_mulVec, right_parity, same_eq_det_toSelfAdjoint, self_parity_eq_zero_iff, stdBasis_inl, symm, contrContrContract_hom_tmul, mem_iff_invariant, mem_iff_norm
33
Total40

Lorentz

Definitions

NameCategoryTheorems
coCoContract šŸ“–CompOp
1 mathmath: coCoContract_hom_tmul
coContrContract šŸ“–CompOp
6 mathmath: coContrContract_apply_metric, contr_preContrCoUnit, contrCoContract_tmul_symm, coContrContract_hom_tmul, coContrContract_basis, coContrContract_tmul_symm
coModContrModBi šŸ“–CompOp—
contrCoContract šŸ“–CompOp
6 mathmath: contrCoContract_tmul_symm, contrCoContract_basis, contr_preCoContrUnit, coContrContract_tmul_symm, contrCoContract_hom_tmul, contrCoContract_apply_metric
contrContrContract šŸ“–CompOp—
contrContrContractField šŸ“–CompOp
26 mathmath: contrContrContractField.ge_abs_inner_product, contrContrContractField.matrix_eq_iff_eq_forall', contrContrContractField.inl_sq_eq, contrContrContractField.matrix_eq_iff_eq_forall, contrContrContractField.basis_left, contrContrContractField.matrix_eq_id_iff, contrContrContractField.dual_mulVec_right, contrContrContractField.self_parity_eq_zero_iff, contrContrContractField.on_basis, LorentzGroup.mem_iff_invariant, contrContrContractField.le_inl_sq, contrContrContractField.matrix_apply_stdBasis, contrContrContract_hom_tmul, contrContrContractField.action_tmul, contrContrContractField.as_sum, contrContrContractField.nondegenerate, contrContrContractField.right_parity, contrContrContractField.ge_sub_norm, contrContrContractField.stdBasis_inl, contrContrContractField.as_sum_toSpace, contrContrContractField.same_eq_det_toSelfAdjoint, contrContrContractField.symm, contrContrContractField.matrix_apply_eq_iff_sub, contrContrContractField.on_basis_mulVec, LorentzGroup.mem_iff_norm, contrContrContractField.dual_mulVec_left
contrModCoModBi šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
coCoContract_hom_tmul šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Co
coCoContract
CoMod.toFin1dā„
minkowskiMatrix
—coContrContract_hom_tmul
coContrContract_basis šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Co
Contr
coContrContract
coBasis
contrBasis
—coContrContract_hom_tmul
coBasis_toFin1dā„
contrBasis_toFin1dā„
coContrContract_hom_tmul šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Co
Contr
coContrContract
CoMod.toFin1dā„
ContrMod.toFin1dā„
——
coContrContract_tmul_symm šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Co
Contr
coContrContract
contrCoContract
—contrCoContract_tmul_symm
contrCoContract_basis šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Contr
Co
contrCoContract
contrBasis
coBasis
—contrCoContract_hom_tmul
contrBasis_toFin1dā„
coBasis_toFin1dā„
contrCoContract_hom_tmul šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Contr
Co
contrCoContract
ContrMod.toFin1dā„
CoMod.toFin1dā„
——
contrCoContract_tmul_symm šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Contr
Co
contrCoContract
coContrContract
—contrCoContract_hom_tmul
coContrContract_hom_tmul
contrContrContract_hom_tmul šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Contr
contrContrContractField
ContrMod.toFin1dā„
minkowskiMatrix
—contrCoContract_hom_tmul

Lorentz.contrContrContractField

Theorems

NameKindAssumesProvesValidatesDepends On
action_tmul šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
——
as_sum šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.val
—Lorentz.contrContrContract_hom_tmul
as_sum_toSpace šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.val
Lorentz.ContrMod.toSpace
—as_sum
basis_left šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod
Lorentz.ContrMod.instAddCommMonoid
Lorentz.ContrMod.instModuleReal
Lorentz.ContrMod.stdBasis
minkowskiMatrix
Lorentz.ContrMod.toFin1dā„
—as_sum
Lorentz.ContrMod.stdBasis_apply_same
Lorentz.ContrMod.stdBasis_inl_apply_inr
Lorentz.ContrMod.stdBasis_apply
dual_mulVec_left šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
minkowskiMatrix.dual
—symm
dual_mulVec_right
dual_mulVec_right šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
minkowskiMatrix.dual
—Lorentz.contrContrContract_hom_tmul
Lorentz.ContrMod.mulVec_toFin1dā„
minkowskiMatrix.sq
ge_abs_inner_product šŸ“–mathematical—Lorentz.ContrMod.val
Lorentz.ContrMod.toSpace
LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
—as_sum_toSpace
ge_sub_norm šŸ“–mathematical—Lorentz.ContrMod.val
Lorentz.ContrMod.toSpace
LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
—ge_abs_inner_product
inl_sq_eq šŸ“–mathematical—Lorentz.ContrMod.val
LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
—as_sum
le_inl_sq šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.val
—inl_sq_eq
matrix_apply_eq_iff_sub šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
—Lorentz.ContrMod.sub_mulVec
matrix_apply_stdBasis šŸ“–mathematical—minkowskiMatrix
LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod
Lorentz.ContrMod.instAddCommMonoid
Lorentz.ContrMod.instModuleReal
Lorentz.ContrMod.stdBasis
Lorentz.ContrMod.mulVec
—on_basis_mulVec
minkowskiMatrix.Ī·_apply_mul_Ī·_apply_diag
matrix_eq_id_iff šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
—matrix_eq_iff_eq_forall
Lorentz.ContrMod.one_mulVec
matrix_eq_iff_eq_forall šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
—matrix_eq_iff_eq_forall'
matrix_eq_iff_eq_forall' šŸ“–mathematical—Lorentz.ContrMod.mulVec
LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
—Lorentz.ContrMod.sub_mulVec
nondegenerate
nondegenerate šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
—self_parity_eq_zero_iff
symm
on_basis šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod
Lorentz.ContrMod.instAddCommMonoid
Lorentz.ContrMod.instModuleReal
Lorentz.ContrMod.stdBasis
minkowskiMatrix
—Lorentz.ContrMod.one_mulVec
on_basis_mulVec
minkowskiMatrix.off_diag_zero
on_basis_mulVec šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod
Lorentz.ContrMod.instAddCommMonoid
Lorentz.ContrMod.instModuleReal
Lorentz.ContrMod.stdBasis
Lorentz.ContrMod.mulVec
minkowskiMatrix
—basis_left
Lorentz.ContrMod.mulVec_toFin1dā„
Lorentz.ContrMod.toFin1dā„_eq_val
Lorentz.ContrMod.stdBasis_apply
right_parity šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
LorentzGroup.parity
Lorentz.ContrMod.val
—as_sum
minkowskiMatrix.mulVec_inl_0
minkowskiMatrix.mulVec_inr_i
same_eq_det_toSelfAdjoint šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod
Lorentz.ContrMod.instAddCommMonoid
Lorentz.ContrMod.instModuleReal
Lorentz.ContrMod.toSelfAdjoint
—Lorentz.ContrMod.toSelfAdjoint_apply_coe
as_sum_toSpace
PauliMatrix.pauliMatrix.eq_1
PauliMatrix.pauliMatrix.eq_2
PauliMatrix.pauliMatrix.eq_3
PauliMatrix.pauliMatrix.eq_4
Lorentz.ContrMod.toSpace.eq_1
Lorentz.ContrMod.toFin1dā„_eq_val
self_parity_eq_zero_iff šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
LorentzGroup.parity
—Lorentz.ContrMod.ext
right_parity
stdBasis_inl šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod
Lorentz.ContrMod.instAddCommMonoid
Lorentz.ContrMod.instModuleReal
Lorentz.ContrMod.stdBasis
—as_sum
Lorentz.ContrMod.stdBasis_apply_same
Lorentz.ContrMod.stdBasis_inl_apply_inr
symm šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
—as_sum

LorentzGroup

Theorems

NameKindAssumesProvesValidatesDepends On
mem_iff_invariant šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
—Lorentz.contrContrContractField.dual_mulVec_right
Lorentz.ContrMod.mulVec_mulVec
mem_iff_dual_mul_self
Lorentz.ContrMod.one_mulVec
Lorentz.contrContrContractField.matrix_eq_id_iff
mem_iff_norm šŸ“–mathematical—LorentzGroup
lorentzGroupIsGroup
Lorentz.Contr
Lorentz.contrContrContractField
Lorentz.ContrMod.mulVec
—mem_iff_invariant
Lorentz.contrContrContractField.symm
Lorentz.ContrMod.mulVec_add
Lorentz.ContrMod.mulVec_sub

---

← Back to Index