Documentation Verification Report

Basic

πŸ“ Source: PhysLean/SpaceAndTime/Space/Derivatives/Basic.lean

Statistics

MetricCount
Definitionsderiv, distDeriv, Β«termβˆ‚[_]Β»
3
Theoremsderiv_add, deriv_commute, deriv_component, deriv_component_diff, deriv_component_same, deriv_component_sq, deriv_const, deriv_coord_add, deriv_coord_smul, deriv_differentiable, deriv_eq, deriv_eq_fderiv_basis, deriv_eq_inner_self, deriv_euclid, deriv_inner_left, deriv_inner_right, deriv_lorentz_vector, deriv_norm_sq, deriv_smul, distDeriv_apply, distDeriv_commute, fderiv_eq_sum_deriv, inner_apply_contDiff, inner_apply_differentiable, inner_apply_differentiableAt, inner_contDiff, inner_differentiable, inner_differentiableAt, norm_sq_differentiable, schwartMap_fderiv_comm
30
Total33

Space

Definitions

NameCategoryTheorems
deriv πŸ“–CompOp
67 mathmath: Electromagnetism.ElectromagneticPotential.harmonicWaveX_electricField_space_deriv_same, deriv_lorentz_vector, IsDistBounded.normPowerSeries_deriv, time_deriv_comm_space_deriv, Electromagnetism.ElectromagneticPotential.time_deriv_magneticFieldMatrix, SpaceTime.deriv_sum_inr, Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_space_deriv_succ, Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_space_deriv_succ, Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_space_deriv_eq, deriv_normPowerSeries_tendsto, grad_apply, space_deriv_differentiable_time, deriv_commute, deriv_inner_right, deriv_eq_fderiv_basis, Electromagnetism.ElectromagneticPotential.curl_magneticFieldMatrix_eq_electricField_fieldStrengthMatrix, Electromagnetism.ElectromagneticPotential.gradKineticTerm_eq_electric_magnetic, inner_grad_eq, grad_eq_sum, deriv_coord_2nd_add, Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_magneticFieldMatrix, Electromagnetism.ElectromagneticPotential.gradLagrangian_eq_electricField_magneticField, deriv_coord_add, deriv_add, Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_space_deriv_eq_time_deriv, Electromagnetism.ElectromagneticPotential.IsPlaneWave.space_deriv_electricField_eq_magneticFieldMatrix, fderiv_eq_sum_deriv, Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_space_deriv, Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_magneticFieldMatrix_of_isExtrema, deriv_normPowerSeries, ClassicalMechanics.planeWave_space_deriv_space_deriv, deriv_eq, deriv_component, deriv_normPowerSeries_zpow, Electromagnetism.ElectromagneticPotential.time_deriv_comp_vectorPotential_eq_electricField, deriv_differentiable, Electromagnetism.ElectromagneticPotential.constantEB_vectorPotential_space_deriv, ClassicalMechanics.planeWave_space_deriv, deriv_inner_left, deriv_euclid, QuantumMechanics.momentumOperator_apply, Electromagnetism.ElectromagneticPotential.IsPlaneWave.electricField_space_deriv, ClassicalMechanics.planeWave_apply_space_deriv, deriv_smul, Electromagnetism.ElectromagneticPotential.IsPlaneWave.space_deriv_magneticFieldMatrix_eq_electricField_mul_propogator, gradient_eq_sum, QuantumMechanics.momentumOperator_apply_fun, deriv_component_diff, grad_inner_single, Electromagnetism.ElectromagneticPotential.magneticFieldMatrix_eq_vectorPotential, Electromagnetism.ElectromagneticPotential.magneticField_curl_eq_magneticFieldMatrix, ClassicalMechanics.planeWave_apply_space_deriv_space_deriv, deriv_const, Electromagnetism.ElectromagneticPotential.harmonicWaveX_vectorPotential_succ_space_deriv_zero, deriv_component_same, Electromagnetism.ElectromagneticPotential.time_deriv_time_deriv_electricField_of_isExtrema, Electromagnetism.ElectromagneticPotential.IsPlaneWave.magneticFieldMatrix_space_deriv_eq_time_deriv, deriv_log_normPowerSeries, Electromagnetism.ElectromagneticPotential.isExtrema_iff_gauss_ampere_magneticFieldMatrix, Electromagnetism.ElectromagneticPotential.harmonicWaveX_magneticFieldMatrix_zero_succ_space_deriv_zero, deriv_coord_2nd_sub, deriv_eq_inner_self, grad_inner_eq, deriv_coord_smul, deriv_component_sq, Electromagnetism.ElectromagneticPotential.time_deriv_electricField_of_isExtrema, deriv_norm_sq
distDeriv πŸ“–CompOp
9 mathmath: distDeriv_distConst, distGrad_apply, distDeriv_constantSliceDist_same, distDeriv_constantSliceDist_succAbove, distDeriv_apply, distDiv_apply_eq_sum_distDeriv, constantTime_distSpaceDeriv, distDeriv_commute, distGrad_toFun_eq_distDeriv
Β«termβˆ‚[_]Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
deriv_add πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
derivβ€”β€”
deriv_commute πŸ“–mathematicalSpace
instNormedAddCommGroup
instInnerProductSpaceReal
derivβ€”β€”
deriv_component πŸ“–mathematicalβ€”deriv
val
β€”deriv_component_same
deriv_component_diff
deriv_component_diff πŸ“–mathematicalβ€”deriv
val
β€”coord_apply
deriv_eq
inner_basis
basis_apply
deriv_component_same πŸ“–mathematicalβ€”deriv
val
β€”coord_apply
deriv_eq
inner_basis
basis_self
deriv_component_sq πŸ“–mathematicalβ€”deriv
val
β€”deriv_eq_fderiv_basis
eval_differentiable
deriv_component
deriv_const πŸ“–mathematicalβ€”derivβ€”deriv.eq_1
deriv_coord_add πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
derivβ€”β€”
deriv_coord_smul πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
derivβ€”β€”
deriv_differentiable πŸ“–mathematicalSpace
instNormedAddCommGroup
instInnerProductSpaceReal
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
deriv
β€”β€”
deriv_eq πŸ“–mathematicalβ€”deriv
Space
instSeminormedAddCommGroup
instAddCommGroup
instModuleReal
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”β€”
deriv_eq_fderiv_basis πŸ“–mathematicalβ€”deriv
Space
instSeminormedAddCommGroup
instAddCommGroup
instModuleReal
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”β€”
deriv_eq_inner_self πŸ“–mathematicalβ€”deriv
Space
instInnerReal
val
β€”deriv_norm_sq
deriv_euclid πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
derivβ€”deriv_eq_fderiv_basis
deriv_inner_left πŸ“–mathematicalβ€”deriv
Space
instInnerReal
val
β€”deriv_eq_fderiv_basis
basis_inner
deriv_inner_right πŸ“–mathematicalβ€”deriv
Space
instInnerReal
val
β€”deriv_eq_fderiv_basis
inner_basis
deriv_lorentz_vector πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
Lorentz.Vector
Lorentz.Vector.instAddCommGroup
Lorentz.Vector.instModuleReal
Lorentz.Vector.isNormedAddCommGroup
derivβ€”deriv_eq_fderiv_basis
deriv_norm_sq πŸ“–mathematicalβ€”deriv
Space
instNorm
val
β€”norm_sq_eq
deriv_eq_fderiv_basis
eval_differentiable
deriv_component_sq
deriv_smul πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
derivβ€”β€”
distDeriv_apply πŸ“–mathematicalβ€”Distribution
Space
instNormedAddCommGroup
instInnerProductSpaceReal
distDeriv
Distribution.fderivD
instFiniteDimensionalReal
basis
β€”instFiniteDimensionalReal
distDeriv_commute πŸ“–mathematicalβ€”Distribution
Space
instNormedAddCommGroup
instInnerProductSpaceReal
distDeriv
β€”instFiniteDimensionalReal
schwartMap_fderiv_comm
fderiv_eq_sum_deriv πŸ“–mathematicalβ€”Space
instSeminormedAddCommGroup
instAddCommGroup
instModuleReal
val
deriv
β€”deriv_eq_fderiv_basis
inner_apply_contDiff πŸ“–mathematicalSpace
instNormedAddCommGroup
instInnerProductSpaceReal
instInnerRealβ€”β€”
inner_apply_differentiable πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
instInnerRealβ€”β€”
inner_apply_differentiableAt πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
instInnerRealβ€”β€”
inner_contDiff πŸ“–mathematicalβ€”Space
instNormedAddCommGroup
instInnerProductSpaceReal
instInnerReal
β€”β€”
inner_differentiable πŸ“–mathematicalβ€”Space
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
instInnerReal
β€”norm_sq_differentiable
inner_differentiableAt πŸ“–mathematicalβ€”Space
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
instInnerReal
β€”inner_differentiable
norm_sq_differentiable πŸ“–mathematicalβ€”Space
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
instNorm
β€”norm_sq_eq
eval_differentiable
schwartMap_fderiv_comm πŸ“–mathematicalβ€”Space
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”β€”

---

← Back to Index