Documentation Verification Report

Grad

πŸ“ Source: PhysLean/SpaceAndTime/Space/Derivatives/Grad.lean

Statistics

MetricCount
DefinitionsdistGrad, grad, Β«termβˆ‡Β»
3
TheoremsdistGrad_apply, distGrad_eq_of_inner, distGrad_eq_sum_basis, distGrad_inner_eq, distGrad_toFun_eq_distDeriv, euclid_gradient_eq_sum, grad_add, grad_apply, grad_const, grad_eq_gradiant, grad_eq_sum, grad_inner, grad_inner_eq, grad_inner_left, grad_inner_repr_eq, grad_inner_right, grad_inner_single, grad_inner_space, grad_inner_space_unit_vector, grad_neg, grad_norm_sq, grad_smul, grad_zero, gradient_eq_grad, gradient_eq_sum, inner_grad_eq, integrable_isDistBounded_inner_grad_schwartzMap, integrable_isDistBounded_inner_grad_schwartzMap_spherical, repr_grad_inner_eq
29
Total32

Space

Definitions

NameCategoryTheorems
distGrad πŸ“–CompOp
17 mathmath: gradient_dist_normPowerSeries_zpow_tendsTo_distGrad_norm, gradient_dist_normPowerSeries_log_tendsTo_distGrad_norm, distGrad_inner_eq, distGrad_distConst, gradient_dist_normPowerSeries_log, gradient_dist_normPowerSeries_zpow_tendsTo, distGrad_apply, gradient_dist_normPowerSeries_zpow, distTranslate_distGrad, distGrad_distOfFunction_log_norm, distGrad_distOfFunction_norm_zpow, distGrad_eq_sum_basis, distGrad_eq_of_inner, distGrad_toFun_eq_distDeriv, gradient_dist_normPowerSeries_log_tendsTo, constantTime_distSpaceGrad, distCurl_distGrad_eq_zero
grad πŸ“–CompOp
34 mathmath: Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_scalarPotential, Electromagnetism.ElectromagneticPotential.hamiltonian_eq_electricField_magneticField, grad_zero, integrable_isDistBounded_inner_grad_schwartzMap_spherical, HasVarAdjoint.grad, grad_apply, grad_norm_sq, Electromagnetism.ElectromagneticPotential.electricField_eq, inner_grad_eq, grad_eq_sum, repr_grad_inner_eq, grad_add, gradient_eq_grad, distDiv_ofFunction, grad_inner_space_unit_vector, grad_eq_gradiant, grad_inner_repr_eq, laplacian_eq_div_of_grad, HasVarAdjoint.div, grad_neg, integrable_isDistBounded_inner_grad_schwartzMap, grad_const, Electromagnetism.ElectromagneticPotential.time_deriv_vectorPotential_eq_electricField, grad_inner_single, grad_inner_right, grad_smul, HasVarAdjDerivAt.grad, IsLocalizedFunctionTransform.grad, grad_inner, curl_of_curl, grad_inner_space, grad_inner_eq, HasVarAdjDerivAt.div, grad_inner_left
Β«termβˆ‡Β» πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
distGrad_apply πŸ“–mathematicalβ€”Distribution
Space
instNormedAddCommGroup
instInnerProductSpaceReal
distGrad
distDeriv
β€”distGrad_toFun_eq_distDeriv
distGrad_eq_of_inner πŸ“–mathematicalSpace
instNormedAddCommGroup
instInnerProductSpaceReal
Distribution
Distribution.fderivD
instFiniteDimensionalReal
basis
distGradβ€”instFiniteDimensionalReal
distGrad_inner_eq
distGrad_eq_sum_basis πŸ“–mathematicalβ€”Distribution
Space
instNormedAddCommGroup
instInnerProductSpaceReal
distGrad
basis
β€”instFiniteDimensionalReal
Distribution.fderivD_apply
distGrad_inner_eq
distGrad_inner_eq πŸ“–mathematicalβ€”Distribution
Space
instNormedAddCommGroup
instInnerProductSpaceReal
distGrad
Distribution.fderivD
instFiniteDimensionalReal
basis
β€”instFiniteDimensionalReal
distGrad.eq_1
basis_repr_inner_eq
distGrad_toFun_eq_distDeriv πŸ“–mathematicalβ€”Space
instNormedAddCommGroup
instInnerProductSpaceReal
Distribution
distGrad
distDeriv
β€”distGrad_eq_sum_basis
euclid_gradient_eq_sum πŸ“–β€”β€”β€”β€”β€”
grad_add πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
gradβ€”deriv_add
grad_apply πŸ“–mathematicalβ€”grad
deriv
β€”grad_eq_sum
grad_const πŸ“–mathematicalβ€”grad
Space
β€”β€”
grad_eq_gradiant πŸ“–mathematicalβ€”grad
Space
instNormedAddCommGroup
instInnerProductSpaceReal
basis
instSeminormedAddCommGroup
instFiniteDimensionalReal
β€”instFiniteDimensionalReal
basis_repr_inner_eq
fderiv_eq_sum_deriv
basis_repr_symm_apply
grad_inner_eq
grad_eq_sum πŸ“–mathematicalβ€”grad
deriv
β€”deriv_eq
grad_inner πŸ“–mathematicalβ€”grad
Space
instInnerReal
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”basis_repr_apply
deriv.eq_1
inner_basis
grad_inner_eq πŸ“–mathematicalβ€”grad
deriv
β€”grad_inner_single
grad_inner_left πŸ“–mathematicalβ€”grad
Space
instInnerReal
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”deriv_inner_left
basis_repr_apply
grad_inner_repr_eq πŸ“–mathematicalβ€”grad
Space
instNormedAddCommGroup
instInnerProductSpaceReal
basis
instSeminormedAddCommGroup
instAddCommGroup
instModuleReal
β€”grad_inner_eq
fderiv_eq_sum_deriv
basis_repr_apply
grad_inner_right πŸ“–mathematicalβ€”grad
Space
instInnerReal
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”grad_inner_left
grad_inner_single πŸ“–mathematicalβ€”grad
deriv
β€”β€”
grad_inner_space πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
grad
instNormedAddCommGroup
instInnerProductSpaceReal
basis
instNorm
instSMulReal
β€”grad_inner_space_unit_vector
grad_inner_space_unit_vector πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
grad
instNorm
instNormedAddCommGroup
instInnerProductSpaceReal
basis
instSMulReal
β€”grad_inner_eq
fderiv_eq_sum_deriv
basis_repr_apply
grad_neg πŸ“–mathematicalβ€”grad
Space
β€”deriv_eq
grad_norm_sq πŸ“–mathematicalβ€”grad
Space
instNorm
instNormedAddCommGroup
instInnerProductSpaceReal
basis
β€”grad_eq_sum
inner_basis
basis_repr_apply
grad_smul πŸ“–mathematicalSpace
instAddCommGroup
instModuleReal
instSeminormedAddCommGroup
gradβ€”deriv_smul
grad_zero πŸ“–mathematicalβ€”grad
Space
β€”β€”
gradient_eq_grad πŸ“–mathematicalβ€”Space
instNormedAddCommGroup
instInnerProductSpaceReal
instSeminormedAddCommGroup
instFiniteDimensionalReal
basis
grad
β€”instFiniteDimensionalReal
grad_eq_gradiant
eq_of_apply
gradient_eq_sum πŸ“–mathematicalβ€”Space
instNormedAddCommGroup
instInnerProductSpaceReal
instSeminormedAddCommGroup
instFiniteDimensionalReal
instAddCommMonoid
instSMulReal
deriv
basis
β€”instFiniteDimensionalReal
gradient_eq_grad
grad_eq_sum
inner_grad_eq πŸ“–mathematicalβ€”grad
deriv
β€”grad_inner_eq
integrable_isDistBounded_inner_grad_schwartzMap πŸ“–mathematicalIsDistBoundedSpace
instNormedAddCommGroup
instInnerProductSpaceReal
instFiniteDimensionalReal
instMeasurableSpace
instBorelSpace
grad
β€”instFiniteDimensionalReal
instBorelSpace
grad_eq_sum
IsDistBounded.integrable_space
IsDistBounded.pi_comp
deriv_eq_fderiv_basis
integrable_isDistBounded_inner_grad_schwartzMap_spherical πŸ“–mathematicalIsDistBoundedSpace
instNormedAddCommGroup
instInnerProductSpaceReal
instFiniteDimensionalReal
instMeasurableSpace
instBorelSpace
grad
instAddCommMonoid
instModuleReal
β€”instFiniteDimensionalReal
instBorelSpace
integrable_isDistBounded_inner_grad_schwartzMap
repr_grad_inner_eq πŸ“–mathematicalβ€”Space
instNormedAddCommGroup
instInnerProductSpaceReal
basis
grad
instSeminormedAddCommGroup
instAddCommGroup
instModuleReal
β€”grad_inner_repr_eq

---

← Back to Index