Documentation

Tactics

The tactic language is a special-purpose programming language for constructing proofs, indicated using the keyword by.

additive_combination

additive_combination attempts to simplify the target by creating a additive combination of a list of equalities and subtracting it from the target. The tactic will create a additive combination by adding the equalities together from left to right, so the order of the input hypotheses does matter. If the normalize field of the configuration is set to false, then the tactic will simply set the user up to prove their target using the additive combination instead of normalizing the subtraction.

Note: The left and right sides of all the equalities should have the same type, and the coefficients should also have this type. There must be instances of Mul and AddGroup for this type.

Example Usage:

example (x y : ℤ) (h1 : x*y + 2*x = 1) (h2 : x = y) : x*y = -2*y + 1 := by
  additive_combination 1*h1 - 2*h2

example (x y : ℤ) (h1 : x*y + 2*x = 1) (h2 : x = y) : x*y = -2*y + 1 := by
  additive_combination h1 - 2*h2

example (x y : ℤ) (h1 : x*y + 2*x = 1) (h2 : x = y) : x*y = -2*y + 1 := by
  additive_combination (norm := ring_nf) -2*h2
  /- Goal: x * y + x * 2 - 1 = 0 -/

example (x y z : ℝ) (ha : x + 2*y - z = 4) (hb : 2*x + y + z = -2)
    (hc : x + 2*y + z = 2) :
    -3*x - 3*y - 4*z = 2 := by
  additive_combination ha - hb - 2*hc

example (x y : ℚ) (h1 : x + y = 3) (h2 : 3*x = 7) :
    x*x*y + y*x*y + 6*x = 3*x*y + 14 := by
  additive_combination x*y*h1 + 2*h2

example (x y : ℤ) (h1 : x = -3) (h2 : y = 10) : 2*x = -6 := by
  additive_combination (norm := skip) 2*h1
  simp

axiom qc : ℚ
axiom hqc : qc = 2*qc

example (a b : ℚ) (h : ∀ p q : ℚ, p = q) : 3*a + qc = 3*b + 2*qc := by
  additive_combination 3 * h a b + hqc

Tags:
Defined in module:
PrimeNumberTheoremAnd.Tactic.AdditiveCombination