Documentation Verification Report

BKLNW

šŸ“ Source: PrimeNumberTheoremAnd/BKLNW.lean

Statistics

MetricCount
DefinitionsInputs, a₁, aā‚‚, default, toPre_inputs, α, Pre_inputs, default, x₁, ε, Table_15, a₁, aā‚‚, f, summand, table_cor_5_1, u
17
Theoremshα, epsilon_nonneg, hx₁, hx₁', hε, buthe_eq_1_7, cor_14_1, cor_2_1, cor_3_1, cor_5_1, g_decreasing_interval, lem_6, lemma_11a, lemma_11b, prop_3, prop_3_sub_1, prop_3_sub_2, prop_3_sub_3, prop_3_sub_4, prop_3_sub_5, prop_3_sub_6, prop_3_sub_7, prop_3_sub_8, prop_4_a, prop_4_b, sum_gt, aux, summand_mono, summand_pos, aux, thm_1a, thm_1a_crit, thm_1a_table, thm_1b, thm_1b_table, thm_5, u_diff_factored
37
Total54
āš ļø With sorryprop_3_sub_1, thm_1b, thm_1b_table
3

BKLNW

Definitions

NameCategoryTheorems
Inputs šŸ“–CompData—
Pre_inputs šŸ“–CompData—
Table_15 šŸ“–CompOp—
a₁ šŸ“–CompOp
2 mathmath: cor_14_1, cor_5_1
aā‚‚ šŸ“–CompOp
4 mathmath: cor_5_1_rem', cor_5_1_rem, cor_14_1, cor_5_1
f šŸ“–CompOp
20 mathmath: prop_3_sub_3, a2_43_mem_Icc, a2_40_mem_Icc, a2_30_mem_Icc, prop_3_sub_2, prop_3_sub_1, prop_3_sub_6, a2_150_mem_Icc, prop_3_sub_7, a2_20_mem_Icc, a2_35_mem_Icc, a2_25_mem_Icc, a2_250_mem_Icc, a2_100_mem_Icc, prop_3_sub_8, a2_300_mem_Icc, a2_200_mem_Icc, prop_3_sub_5, prop_3, cor_3_1
summand šŸ“–CompOp
5 mathmath: summand_pos, summand_mono, sum_gt.aux, u_diff_factored, sum_gt
table_cor_5_1 šŸ“–CompOp—
u šŸ“–CompOp
3 mathmath: prop_3_sub_3, prop_3_sub_4, u_diff_factored

Theorems

NameKindAssumesProvesValidatesDepends On
buthe_eq_1_7 šŸ“–ā€”ā€”ā€”ā€”Buthe.theorem_2c
cor_14_1 šŸ“–mathematicalEψ.classicalBoundEĪø
admissible_bound
a₁
aā‚‚
—Pre_inputs.epsilon_nonneg
cor_5_1
cor_2_1 šŸ“–mathematical—BKLNW_app.table_8_margin—buthe_eq_1_7
LogTables.log_10_gt
LogTables.log_10_lt
BKLNW_app.theorem_2
BKLNW_app.table_8_ε.le_simp
thm_1a
cor_3_1 šŸ“–mathematical—Inputs.α
f
—prop_3
Inputs.hα
cor_5_1 šŸ“–mathematical—a₁
aā‚‚
—thm_5
g_decreasing_interval šŸ“–ā€”ā€”ā€”ā€”ā€”
lem_6 šŸ“–mathematicalEĪø.classicalBoundEθ—g_decreasing_interval
lemma_11a šŸ“–mathematical—Pre_inputs.ε
Pre_inputs.x₁
—Pre_inputs.hx₁
Pre_inputs.hx₁'
Pre_inputs.epsilon_nonneg
Pre_inputs.hε
lemma_11b šŸ“–mathematical—Pre_inputs.ε
RS_prime.cā‚€
—RS_prime.theorem_12
prop_3 šŸ“–mathematical—Inputs.α
f
—Inputs.hα
prop_3_sub_8
prop_3_sub_1 šŸ“– āš ļømathematical—Inputs.α
f
——
prop_3_sub_2 šŸ“–mathematical—f——
prop_3_sub_3 šŸ“–mathematical—f
u
—f.eq_1
u.eq_1
prop_3_sub_4 šŸ“–mathematical—u—u_diff_factored
sum_gt
prop_3_sub_5 šŸ“–mathematical—f—prop_3_sub_3
prop_3_sub_4
prop_3_sub_6 šŸ“–mathematical—f—prop_3_sub_2
prop_3_sub_5
prop_3_sub_7 šŸ“–mathematical—f—prop_3_sub_2
prop_3_sub_8 šŸ“–mathematical—f—prop_3_sub_7
prop_3_sub_6
prop_4_a šŸ“–mathematical—Pre_inputs.ε
Inputs.toPre_inputs
Pre_inputs.x₁
—Pre_inputs.hx₁
Pre_inputs.hx₁'
Pre_inputs.epsilon_nonneg
Pre_inputs.hε
prop_4_b šŸ“–mathematical—Pre_inputs.ε
Inputs.toPre_inputs
—Pre_inputs.hε
sum_gt šŸ“–mathematical—summand—sum_gt.aux
summand_pos
summand_mono
summand_mono šŸ“–mathematical—summand—summand_pos.aux
summand_pos šŸ“–mathematical—summand—summand_pos.aux
thm_1a šŸ“–mathematical—Pre_inputs.ε
Pre_inputs.default
RS_prime.cā‚€
—BKLNW_app.theorem_2
thm_1a_crit šŸ“–ā€”check_row_prop——thm_1a
thm_1a_table šŸ“–ā€”table_14——thm_1a_crit
table_14_check
thm_1b šŸ“– āš ļøā€”ā€”ā€”ā€”ā€”
thm_1b_table šŸ“– āš ļøā€”Table_15———
thm_5 šŸ“–mathematical—Inputs.a₁
Inputs.aā‚‚
—prop_4_a
prop_4_b
cor_3_1
u_diff_factored šŸ“–mathematical—u
summand
—u.eq_1
summand.eq_1

BKLNW.Inputs

Definitions

NameCategoryTheorems
a₁ šŸ“–CompOp
1 mathmath: BKLNW.thm_5
aā‚‚ šŸ“–CompOp
1 mathmath: BKLNW.thm_5
default šŸ“–CompOp—
toPre_inputs šŸ“–CompOp
2 mathmath: BKLNW.prop_4_a, BKLNW.prop_4_b
α šŸ“–CompOp
4 mathmath: BKLNW.prop_3_sub_1, hα, BKLNW.prop_3, BKLNW.cor_3_1

Theorems

NameKindAssumesProvesValidatesDepends On
hα šŸ“–mathematical—α——

BKLNW.Pre_inputs

Definitions

NameCategoryTheorems
default šŸ“–CompOp
1 mathmath: BKLNW.thm_1a
x₁ šŸ“–CompOp
3 mathmath: hx₁, BKLNW.prop_4_a, BKLNW.lemma_11a
ε šŸ“–CompOp
7 mathmath: epsilon_nonneg, hε, BKLNW.prop_4_a, BKLNW.lemma_11b, BKLNW.lemma_11a, BKLNW.thm_1a, BKLNW.prop_4_b

Theorems

NameKindAssumesProvesValidatesDepends On
epsilon_nonneg šŸ“–mathematical—ε—hε
hx₁ šŸ“–mathematical—x₁——
hx₁' šŸ“–ā€”x₁———
hε šŸ“–mathematical—ε——

BKLNW.sum_gt

Theorems

NameKindAssumesProvesValidatesDepends On
aux šŸ“–mathematical—BKLNW.summand——

BKLNW.summand_pos

Theorems

NameKindAssumesProvesValidatesDepends On
aux šŸ“–ā€”ā€”ā€”ā€”ā€”

---

← Back to Index