BKLNW_app
📁 Source: PrimeNumberTheoremAnd/BKLNW_app.lean
Statistics
| Metric | Count |
|---|---|
| 22 | |
| 15 | |
| Total | 37 |
⚠️ With sorrybklnw_cor_15_1, bklnw_eq_A_10, bklnw_eq_A_12, bklnw_eq_A_13, bklnw_eq_A_26, bklnw_eq_A_7, bklnw_eq_A_9, bklnw_thm_15, bklnw_thm_16, theorem_2, thm_14 | 11 |
BKLNW_app
Definitions
| Name | Category | Theorems |
|---|---|---|
Inputs 📖 | CompData | — |
Sigma₁ 📖 | CompOp | |
Sigma₂ 📖 | CompOp | |
bklnw_eq_A_8 📖 | CompOp | |
pre_μ 📖 | CompOp | — |
s₁ 📖 | CompOp | |
η 📖 | CompOp | — |
μ 📖 | CompOp | — |
ν 📖 | CompOp | — |
ℓ 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
bklnw_cor_15_1 📖 ⚠️ | — | Eψ | — | — | — |
bklnw_cor_15_1' 📖 | mathematical | — | Eψtable_8_margin | — | bklnw_cor_15_1Eψ.eq_1theorem_2LogTables.log_10_gtLogTables.log_10_lttable_8_ε.le_simp |
bklnw_eq_A_10 📖 ⚠️ | mathematical | — | Sigma₁ | — | — |
bklnw_eq_A_12 📖 ⚠️ | mathematical | — | Sigma₂Inputs.HInputs.Rzero_density_bound.NInputs.ZDB | — | — |
bklnw_eq_A_13 📖 ⚠️ | mathematical | — | Sigma₂Inputs.HInputs.Rzero_density_bound.c₁Inputs.ZDBzero_density_bound.c₂ | — | — |
bklnw_eq_A_26 📖 ⚠️ | mathematical | — | Eψ | — | — |
bklnw_eq_A_7 📖 ⚠️ | mathematical | — | riemannZeta.zeroes_sum | — | — |
bklnw_eq_A_9 📖 ⚠️ | mathematical | — | riemannZeta.zeroes_sumSigma₁Sigma₂ | — | — |
bklnw_lemma_15 📖 | — | Eψ | — | — | — |
bklnw_thm_15 📖 ⚠️ | mathematical | Inputs.H | bklnw_eq_A_8s₁Inputs.s₂ | — | — |
bklnw_thm_16 📖 ⚠️ | mathematical | νμ | EψriemannZeta.zeroes_sumℓ | — | — |
theorem_2 📖 ⚠️ | mathematical | — | table_8_ε | — | — |
thm_14 📖 ⚠️ | mathematical | — | EψInputs.AInputs.RInputs.BInputs.C | — | — |
BKLNW_app.Inputs
Definitions
| Name | Category | Theorems |
|---|---|---|
A 📖 | CompOp | |
B 📖 | CompOp | |
C 📖 | CompOp | |
H 📖 | CompOp | |
R 📖 | CompOp | |
ZDB 📖 | CompOp | |
c3 📖 | CompOp | — |
c4 📖 | CompOp | — |
c5 📖 | CompOp | — |
default 📖 | CompOp | — |
k 📖 | CompOp | — |
s₂ 📖 | CompOp |
Theorems
| Name | Kind | Assumes | Proves | Validates | Depends On |
|---|---|---|---|---|---|
hH 📖 | mathematical | — | riemannZeta.RH_up_toH | — | — |
hR 📖 | mathematical | — | riemannZeta.classicalZeroFreeR | — | — |
---