Documentation Verification Report

BKLNW_app

📁 Source: PrimeNumberTheoremAnd/BKLNW_app.lean

Statistics

MetricCount
DefinitionsInputs, A, B, C, H, R, ZDB, c3, c4, c5, default, k, s₂, Sigma₁, Sigma₂, bklnw_eq_A_8, pre_μ, s₁, η, μ, ν,
22
TheoremshH, hR, bklnw_cor_15_1, bklnw_cor_15_1', bklnw_eq_A_10, bklnw_eq_A_12, bklnw_eq_A_13, bklnw_eq_A_26, bklnw_eq_A_7, bklnw_eq_A_9, bklnw_lemma_15, bklnw_thm_15, bklnw_thm_16, theorem_2, thm_14
15
Total37
⚠️ With sorrybklnw_cor_15_1, bklnw_eq_A_10, bklnw_eq_A_12, bklnw_eq_A_13, bklnw_eq_A_26, bklnw_eq_A_7, bklnw_eq_A_9, bklnw_thm_15, bklnw_thm_16, theorem_2, thm_14
11

BKLNW_app

Definitions

NameCategoryTheorems
Inputs 📖CompData
Sigma₁ 📖CompOp
2 mathmath: bklnw_eq_A_10, bklnw_eq_A_9
Sigma₂ 📖CompOp
3 mathmath: bklnw_eq_A_12, bklnw_eq_A_9, bklnw_eq_A_13
bklnw_eq_A_8 📖CompOp
1 mathmath: bklnw_thm_15
pre_μ 📖CompOp
s₁ 📖CompOp
1 mathmath: bklnw_thm_15
η 📖CompOp
μ 📖CompOp
ν 📖CompOp
📖CompOp
1 mathmath: bklnw_thm_16

Theorems

NameKindAssumesProvesValidatesDepends On
bklnw_cor_15_1 📖 ⚠️
bklnw_cor_15_1' 📖mathematical
table_8_margin
bklnw_cor_15_1
Eψ.eq_1
theorem_2
LogTables.log_10_gt
LogTables.log_10_lt
table_8_ε.le_simp
bklnw_eq_A_10 📖 ⚠️mathematicalSigma₁
bklnw_eq_A_12 📖 ⚠️mathematicalSigma₂
Inputs.H
Inputs.R
zero_density_bound.N
Inputs.ZDB
bklnw_eq_A_13 📖 ⚠️mathematicalSigma₂
Inputs.H
Inputs.R
zero_density_bound.c₁
Inputs.ZDB
zero_density_bound.c₂
bklnw_eq_A_26 📖 ⚠️mathematical
bklnw_eq_A_7 📖 ⚠️mathematicalriemannZeta.zeroes_sum
bklnw_eq_A_9 📖 ⚠️mathematicalriemannZeta.zeroes_sum
Sigma₁
Sigma₂
bklnw_lemma_15 📖
bklnw_thm_15 📖 ⚠️mathematicalInputs.Hbklnw_eq_A_8
s₁
Inputs.s₂
bklnw_thm_16 📖 ⚠️mathematicalν
μ

riemannZeta.zeroes_sum
theorem_2 📖 ⚠️mathematicaltable_8_ε
thm_14 📖 ⚠️mathematical
Inputs.A
Inputs.R
Inputs.B
Inputs.C

BKLNW_app.Inputs

Definitions

NameCategoryTheorems
A 📖CompOp
1 mathmath: BKLNW_app.thm_14
B 📖CompOp
1 mathmath: BKLNW_app.thm_14
C 📖CompOp
1 mathmath: BKLNW_app.thm_14
H 📖CompOp
3 mathmath: hH, BKLNW_app.bklnw_eq_A_12, BKLNW_app.bklnw_eq_A_13
R 📖CompOp
4 mathmath: BKLNW_app.thm_14, BKLNW_app.bklnw_eq_A_12, hR, BKLNW_app.bklnw_eq_A_13
ZDB 📖CompOp
2 mathmath: BKLNW_app.bklnw_eq_A_12, BKLNW_app.bklnw_eq_A_13
c3 📖CompOp
c4 📖CompOp
c5 📖CompOp
default 📖CompOp
k 📖CompOp
s₂ 📖CompOp
1 mathmath: BKLNW_app.bklnw_thm_15

Theorems

NameKindAssumesProvesValidatesDepends On
hH 📖mathematicalriemannZeta.RH_up_to
H
hR 📖mathematicalriemannZeta.classicalZeroFree
R

---

← Back to Index