Documentation Verification Report

BrunTitchmarsh

📁 Source: PrimeNumberTheoremAnd/BrunTitchmarsh.lean

Statistics

MetricCount
DefinitionsprimeInterSieve, primesBetween
2
TheoremsIoc_filter_dvd_eq, nat_Top_of_atTop, ceil_le_self_add_one, abs_rem_le, boudingSum_ge, card_Ioc_filter_dvd, card_isPrimePow_isBigO, card_pows_aux, card_range_filter_isPrimePow_le, card_range_filter_prime_isBigO, ceil_approx, err_isBigO, floor_approx, floor_div_approx, multSum_eq, nat_div_approx, one_add_log_div_log_two_isBigO, pow_half_mul_one_add_log_div_isBigO, pows_small_primes_le, primeSieve_rem_sum_le, prime_or_pow, primesBetween_le, primesBetween_le_siftedSum_add, primesBetween_mono_right, primesBetween_one, primesBetween_subset, range_filter_isPrimePow_subset_union, rem_eq, rpow_mul_rpow_log_isBigO_id_div_log, siftedSum_eq_card, siftedSum_le, tmp
32
Total34

BrunTitchmarsh

Definitions

NameCategoryTheorems
primeInterSieve 📖CompOp
8 mathmath: primesBetween_le_siftedSum_add, boudingSum_ge, primeSieve_rem_sum_le, siftedSum_le, rem_eq, multSum_eq, abs_rem_le, siftedSum_eq_card
primesBetween 📖CompOp
4 mathmath: primesBetween_le_siftedSum_add, primesBetween_le, primesBetween_mono_right, primesBetween_one

Theorems

NameKindAssumesProvesValidatesDepends On
Ioc_filter_dvd_eq 📖
abs_rem_le 📖mathematicalprimeInterSieverem_eq
Nat.ceil_le_self_add_one
floor_div_approx
nat_div_approx
ceil_approx
boudingSum_ge 📖mathematicalSelbergSieve.selbergBoundingSum
primeInterSieve
Sieve.boundingSum_ge_log
Sieve.prime_dvd_primorial_iff
card_Ioc_filter_dvd 📖Ioc_filter_dvd_eq
card_isPrimePow_isBigO 📖range_filter_isPrimePow_subset_union
card_range_filter_prime_isBigO
card_pows_aux
card_pows_aux 📖pows_small_primes_le
Asymptotics.IsBigO.natCast
pow_half_mul_one_add_log_div_isBigO
card_range_filter_isPrimePow_le 📖IsBigO.nat_Top_of_atTop
card_isPrimePow_isBigO
card_range_filter_prime_isBigO 📖tmp
Asymptotics.IsBigO.natCast
err_isBigO
ceil_approx 📖Nat.ceil_le_self_add_one
err_isBigO 📖rpow_mul_rpow_log_isBigO_id_div_log
floor_approx 📖
floor_div_approx 📖nat_div_approx
floor_approx
multSum_eq 📖mathematicalprimeInterSieveprimeInterSieve.eq_1
card_Ioc_filter_dvd
nat_div_approx 📖floor_approx
one_add_log_div_log_two_isBigO 📖
pow_half_mul_one_add_log_div_isBigO 📖one_add_log_div_log_two_isBigO
rpow_mul_rpow_log_isBigO_id_div_log
pows_small_primes_le 📖
primeSieve_rem_sum_le 📖mathematicalprimeInterSieveSieve.rem_sum_le_of_const
abs_rem_le
prime_or_pow 📖
primesBetween_le 📖mathematicalprimesBetweensiftedSum_le
primesBetween_le_siftedSum_add
primesBetween_le_siftedSum_add 📖mathematicalprimesBetween
primeInterSieve
primesBetween.eq_1
primesBetween_subset
siftedSum_eq_card
primesBetween_mono_right 📖mathematicalprimesBetween
primesBetween_one 📖mathematicalprimesBetweenprimesBetween.eq_1
primesBetween_subset 📖
range_filter_isPrimePow_subset_union 📖prime_or_pow
rem_eq 📖mathematicalprimeInterSievemultSum_eq
rpow_mul_rpow_log_isBigO_id_div_log 📖
siftedSum_eq_card 📖mathematicalprimeInterSieveSieve.siftedSum_eq
siftedSum_le 📖mathematicalprimeInterSieveSelbergSieve.selberg_bound_simple
boudingSum_ge
primeSieve_rem_sum_le
tmp 📖primesBetween_one
primesBetween_le
primesBetween_mono_right

BrunTitchmarsh.IsBigO

Theorems

NameKindAssumesProvesValidatesDepends On
nat_Top_of_atTop 📖

BrunTitchmarsh.Nat

Theorems

NameKindAssumesProvesValidatesDepends On
ceil_le_self_add_one 📖

---

← Back to Index