| Name | Category | Theorems |
Eθ 📖 | CompOp | 11 mathmath: BKLNW.lem_6, Ramanujan.pi_bound_1, Dusart.theorem_4_2, Ramanujan.pi_bound_5, FKS2.theorem_6_1, Ramanujan.pi_bound_3, Ramanujan.pi_bound_4, BKLNW.cor_14_1, FKS2.lemma_12, Ramanujan.pi_bound_2, Ramanujan.pi_bound
|
Eπ 📖 | CompOp | 6 mathmath: FKS2.theorem_6, FKS2.corollary_24, FKS2.corollary_21, FKS2.theorem_6_1, FKS2.corollary_8, FKS2.theorem_6_alt
|
Eψ 📖 | CompOp | 13 mathmath: BKLNW_app.thm_14, FKS.lemma_5_3, FKS.theorem_1_1b, BKLNW_app.bklnw_thm_16, BKLNW_app.bklnw_eq_A_26, FKS.proposition_3_4, FKS.theorem_3_1, FKS.theorem_1_1, Dusart.proposition_3_2, BKLNW_app.bklnw_cor_15_1', FKS.lemma_5_4, Buthe.theorem_2a, Dusart.theorem_3_3
|
HasPrimeInInterval 📖 | MathDef | 23 mathmath: Dusart.proposition_5_4c, CullyHugill2021.has_prime_in_interval, RamareSaouter2003.has_prime_in_interval, HasPrimeInInterval.iff_theta_ge, GourdonDemichel2004.has_prime_in_interval, Dudek2014.has_prime_in_interval, CarneiroEtAl2019RH.has_prime_in_interval, Dusart.corollary_5_5, Eθ.numericalBound.hasPrimeInInterval, PrimeGaps2014.has_prime_in_interval, PrimeGaps2024.has_prime_in_interval, Trudgian2016.has_prime_in_interval, HasPrimeInInterval.iff_pi_ge, RHPrimeInterval2002.has_prime_in_interval, Schoenfeld1976.has_prime_in_interval, Eθ.classicalBound.hasPrimeInInterval, theta_pos_implies_prime_in_interval, Eθ.hasPrimeInInterval, Dudek2015RH.has_prime_in_interval, prime_gap_record.hasPrimeInInterval, RamareSaouter2003.has_prime_in_interval_2, Dusart.proposition_5_4b, KadiriLumley.has_prime_in_interval
|
Li 📖 | CompOp | 7 mathmath: li.sub_Li, FKS2.hasDerivAt_Li, FKS2.theorem_6_3, FKS2.theorem_6_1, FKS2.lemma_20_a, FKS2.lemma_20_b, FKS2.lemma_19
|
M 📖 | CompOp | 3 mathmath: M_isLittleO, M_isLittleO', M_log_identity
|
Psi 📖 | CompOp | 2 mathmath: M_log_identity, sum_mu_Lambda
|
admissible_bound 📖 | CompOp | 7 mathmath: Eψ.classicalBound.to_numericalBound, Eθ.classicalBound.to_numericalBound, FKS2.corollary_21, Eπ.classicalBound.to_numericalBound, BKLNW.cor_14_1, FKS2.corollary_14_small_adm, admissible_bound.mono
|
first_gap 📖 | CompOp | 9 mathmath: eSHP.first_gap_4, eSHP.first_gap_2, eSHP.first_gap_1, eSHP.first_gap_5, eSHP.first_gap_odd_gt_1, eSHP.first_gap_3, eSHP.first_gap_6, eSHP.first_gap_7, eSHP.exists_prime_gap
|
first_gap_record 📖 | MathDef | 2 mathmath: eSHP.table_9_prime_gap, eSHP.table_9_prime_gap_test
|
li 📖 | CompOp | 9 mathmath: Ramanujan.pi_error_identity, li.sub_Li, li.two_approx, li.two_approx_weak, Buthe.theorem_2d, li_eq_Li2Bounds_li, Buthe.theorem_2f, li2_symmetric_eq_li2, Buthe.theorem_2e
|
nth_prime 📖 | CompOp | 7 mathmath: eSHP.exists_prime_gap_record_le, nth_prime_asymp, log_nth_prime_asymp, eSHP.nth_prime_vals, pi_nth_prime_asymp, pi_nth_prime, tendsto_nth_prime_atTop
|
nth_prime_gap 📖 | CompOp | 2 mathmath: eSHP.exists_prime_gap_record_le, eSHP.max_prime_gap
|
pi 📖 | CompOp | 20 mathmath: Ramanujan.pi_error_identity, Dusart.corollary_5_3_a, Dusart.corollary_5_3_b, Ramanujan.pi_upper, Ramanujan.pi_lower, Dusart.theorem_5_1, Ramanujan.pi_upper_specific, Dusart.corollary_5_2_d, Ramanujan.pi_lower_specific, Dusart.corollary_5_2_b, Buthe.theorem_2f, Dusart.corollary_5_3_d, HasPrimeInInterval.iff_pi_ge, Dusart.corollary_5_2_f, Dusart.corollary_5_2_e, Dusart.corollary_5_2_c, Dusart.corollary_5_3_c, Buthe.theorem_2e, Dusart.corollary_5_2_a, Ramanujan.ramanujan_final
|
prime_gap_record 📖 | MathDef | 3 mathmath: eSHP.exists_prime_gap_record_le, eSHP.table_8_prime_gap_test, eSHP.table_8_prime_gap
|