Documentation Verification Report

FKS2

📁 Source: PrimeNumberTheoremAnd/FKS2.lean

Statistics

MetricCount
DefinitionsTable_4, Table_5, dawson, default_b, g_bound, table6, table7, δ, εθ_from_εψ, επ_num, μ_asymp, μ_num, μ_num_1, μ_num_2, ν_asymp
15
Theoremscorollary_11, corollary_14, corollary_14_small_adm, corollary_21, corollary_22, corollary_23, corollary_24, corollary_26, corollary_8, hasDerivAt_Li, lemma_10_substep, lemma_10_substep_2, lemma_10a, lemma_10b, lemma_10c, lemma_12, lemma_19, lemma_20_a, lemma_20_b, proposition_13, proposition_17, psi_le_bound, psi_le_bound_large, psi_le_bound_medium, psi_le_bound_small, remark_15, remark_7, remark_after_corollary_11, theorem_3, theorem_6, theorem_6_1, theorem_6_2, theorem_6_3, theorem_6_alt
34
Total49
⚠️ With sorrycorollary_22, corollary_23, corollary_24, corollary_26, corollary_8, lemma_12, lemma_19, lemma_20_b, proposition_13, remark_15, remark_after_corollary_11, theorem_3, theorem_6, theorem_6_1, theorem_6_2, theorem_6_3, theorem_6_alt
17

FKS2

Definitions

NameCategoryTheorems
Table_4 📖CompOp
Table_5 📖CompOp
dawson 📖CompOp
2 mathmath: remark_after_corollary_11, lemma_12
default_b 📖CompOp
g_bound 📖CompOp
6 mathmath: lemma_10_substep_2, lemma_10_substep, lemma_10a, lemma_10c, corollary_11, lemma_10b
table6 📖CompOp
table7 📖CompOp
δ 📖CompOp
εθ_from_εψ 📖CompOp
1 mathmath: proposition_17
επ_num 📖CompOp
2 mathmath: theorem_6, corollary_8
μ_asymp 📖CompOp
2 mathmath: theorem_3, corollary_21
μ_num 📖CompOp
μ_num_1 📖CompOp
1 mathmath: remark_7
μ_num_2 📖CompOp
2 mathmath: remark_7, theorem_6_alt
ν_asymp 📖CompOp
2 mathmath: corollary_21, proposition_13

Theorems

NameKindAssumesProvesValidatesDepends On
corollary_11 📖mathematicalg_boundlemma_10a
corollary_14 📖mathematicalEθ.classicalBoundcorollary_14_small_adm
LogTables.log_2_lt
LogTables.log_2_gt
LogTables.log_10_gt
BKLNW_app.table_8_ε_le_of_row
BKLNW_app.table_8_mem_40
LogTables.log_13_gt
FKS.FKS_corollary_1_3
proposition_13
Eθ.classicalBound.eq_1
BKLNW.buthe_eq_1_7
corollary_14_small_adm 📖mathematicaladmissible_boundLogTables.log_2_gt
LogTables.log_5_gt
LogTables.log_23_gt
corollary_21 📖mathematicalEψ.classicalBound
admissible_bound
ν_asymp
μ_asymp
theorem_3
proposition_13
corollary_22 📖 ⚠️mathematicalEπ.classicalBound
corollary_23 📖 ⚠️mathematicaltable6Eπ.classicalBound
corollary_24 📖 ⚠️mathematicaltable7
corollary_26 📖 ⚠️mathematicalEπ.bound
corollary_8 📖 ⚠️mathematicalEθ.numericalBound
επ_num
hasDerivAt_Li 📖mathematicalLi
lemma_10_substep 📖mathematicalg_bound
lemma_10_substep_2 📖mathematicalg_boundlemma_10_substep
lemma_10a 📖mathematicalg_boundlemma_10_substep_2
lemma_10b 📖mathematicalg_boundlemma_10_substep_2
lemma_10c 📖mathematicalg_bound
lemma_12 📖 ⚠️mathematicalEθ.classicalBound
dawson
lemma_19 📖 ⚠️mathematicalEθ.numericalBoundLi
lemma_20_a 📖mathematicalLihasDerivAt_Li
lemma_20_b 📖 ⚠️mathematicalLi
proposition_13 📖 ⚠️mathematicalEψ.classicalBoundEθ.classicalBound
ν_asymp
proposition_17 📖mathematicalεθ_from_εψCostaPereira.theorem_1a
psi_le_bound
εθ_from_εψ.eq_1
psi_le_bound 📖psi_le_bound_small
psi_le_bound_medium
psi_le_bound_large
psi_le_bound_large 📖BKLNW_app.theorem_2
LogTables.log_10_gt
LogTables.log_10_lt
BKLNW_app.table_8_ε.le_simp
psi_le_bound_medium 📖BKLNW_app.bklnw_eq_A_26
psi_le_bound_small 📖
remark_15 📖 ⚠️mathematicalEθ.classicalBound
FKS.A
remark_7 📖mathematicalμ_num_1
μ_num_2
hasDerivAt_Li
theorem_6_2
remark_after_corollary_11 📖 ⚠️mathematicaldawson
theorem_3 📖 ⚠️mathematicalEθ.classicalBoundEπ.classicalBound
μ_asymp
theorem_6 📖 ⚠️mathematicalEθ.numericalBound
επ_num
theorem_6_1 📖 ⚠️mathematicalEθ.numericalBound

Li
theorem_6_2 📖 ⚠️
theorem_6_3 📖 ⚠️mathematicalLi
theorem_6_alt 📖 ⚠️mathematicalEθ.numericalBound
μ_num_2

---

← Back to Index