Documentation Verification Report

IwaniecKowalskiCh1

πŸ“ Source: PrimeNumberTheoremAnd/IwaniecKowalskiCh1.lean

Statistics

MetricCount
DefinitionsIsAdditive, IsCompletelyAdditive, d, sigmaC, tau, termΟ„
6
TheoremsisAdditive, LSeries_d_eq_riemannZeta_pow, LSeries_sigma_eq_riemannZeta_mul, LSeries_tau_eq_riemannZeta_sq, d_apply, d_apply_prime_pow, d_isMultiplicative, d_one, d_succ, d_two, d_zero, sigmaC_natCast, sum_moebius_pmul_eq_prod_one_sub, zeta_mul_zeta
14
Total20
⚠️ With sorryLSeries_d_eq_riemannZeta_pow, LSeries_sigma_eq_riemannZeta_mul, d_apply, d_apply_prime_pow, d_isMultiplicative, sigmaC_natCast, sum_moebius_pmul_eq_prod_one_sub, zeta_mul_zeta
8

ArithmeticFunction

Definitions

NameCategoryTheorems
IsAdditive πŸ“–MathDef
1 mathmath: IsCompletelyAdditive.isAdditive
IsCompletelyAdditive πŸ“–MathDefβ€”
d πŸ“–CompOp
8 mathmath: d_zero, d_one, d_two, d_apply_prime_pow, LSeries_d_eq_riemannZeta_pow, d_apply, d_succ, d_isMultiplicative
sigmaC πŸ“–CompOp
2 mathmath: sigmaC_natCast, LSeries_sigma_eq_riemannZeta_mul
tau πŸ“–CompOp
3 mathmath: d_two, zeta_mul_zeta, LSeries_tau_eq_riemannZeta_sq
termΟ„ πŸ“–CompOpβ€”

Theorems

NameKindAssumesProvesValidatesDepends On
LSeries_d_eq_riemannZeta_pow πŸ“– ⚠️mathematicalβ€”dβ€”β€”
LSeries_sigma_eq_riemannZeta_mul πŸ“– ⚠️mathematicalβ€”sigmaCβ€”β€”
LSeries_tau_eq_riemannZeta_sq πŸ“–mathematicalβ€”tauβ€”zeta_mul_zeta
d_apply πŸ“– ⚠️mathematicalβ€”dβ€”β€”
d_apply_prime_pow πŸ“– ⚠️mathematicalβ€”dβ€”β€”
d_isMultiplicative πŸ“– ⚠️mathematicalβ€”dβ€”d_zero
d_one πŸ“–mathematicalβ€”dβ€”β€”
d_succ πŸ“–mathematicalβ€”dβ€”β€”
d_two πŸ“–mathematicalβ€”d
tau
β€”zeta_mul_zeta
d_zero πŸ“–mathematicalβ€”dβ€”β€”
sigmaC_natCast πŸ“– ⚠️mathematicalβ€”sigmaCβ€”β€”
sum_moebius_pmul_eq_prod_one_sub πŸ“– βš οΈβ€”β€”β€”β€”β€”
zeta_mul_zeta πŸ“– ⚠️mathematicalβ€”tauβ€”β€”

ArithmeticFunction.IsCompletelyAdditive

Theorems

NameKindAssumesProvesValidatesDepends On
isAdditive πŸ“–mathematicalArithmeticFunction.IsCompletelyAdditiveArithmeticFunction.IsAdditiveβ€”β€”

---

← Back to Index