Documentation Verification Report

Lcm

๐Ÿ“ Source: PrimeNumberTheoremAnd/Lcm.lean

Statistics

MetricCount
DefinitionsCriterion, L', M, m, mk', n, p, q, r, HighlyAbundant, L, Xโ‚€, ฯƒ, ฯƒnorm
14
TheoremsL'_pos, L_eq_prod_q_mul_L', L_pos, Ln_div_M_gt, Ln_div_M_lt, M_lt, M_pos, h_crit, h_ord_1, h_ord_2, h_ord_3, hn, hp, hp_mono, hq, hq_mono, ln_eq, m_pos, not_highlyAbundant, not_highlyAbundant_1, not_highlyAbundant_2, p_gt_two, prod_p_le_prod_q, prod_q_dvd_L, prod_q_eq, q_gt_two, q_not_dvd_L', r_ge, r_le, val_p_L', val_p_M_ge_two, val_two_L', val_two_M_ge_L', ฯƒnorm_M_ge_ฯƒnorm_L'_mul, ฯƒnorm_ln_eq, L_eq_prod, L_not_HA_of_ge, exists_p_primes, exists_q_primes, final_comparison, hlog, hsqrt_ge, hฮต_pos, inv_cube_log_sqrt_le, inv_n_add_sqrt_ge, inv_n_pow_3_div_2_le, log_L_eq_psi, log_Xโ‚€_gt, log_Xโ‚€_pos, pq_ratio_ge, prod_epsilon_ge, prod_epsilon_le, prod_p_ge, prod_q_ge, psi_eq_prod
55
Total69
โš ๏ธ With sorryL_eq_prod, log_L_eq_psi, psi_eq_prod
3

Lcm

Definitions

NameCategoryTheorems
Criterion ๐Ÿ“–CompDataโ€”
HighlyAbundant ๐Ÿ“–MathDef
4 mathmath: Criterion.not_highlyAbundant_2, Criterion.not_highlyAbundant, Criterion.not_highlyAbundant_1, L_not_HA_of_ge
L ๐Ÿ“–CompOp
13 mathmath: Criterion.Ln_div_M_lt, Criterion.not_highlyAbundant_2, Criterion.ฯƒnorm_ln_eq, Criterion.not_highlyAbundant, Criterion.L_eq_prod_q_mul_L', log_L_eq_psi, L_not_HA_of_ge, Criterion.L_pos, Criterion.M_lt, Criterion.prod_q_dvd_L, Criterion.ln_eq, Criterion.Ln_div_M_gt, L_eq_prod
Xโ‚€ ๐Ÿ“–CompOp
2 mathmath: log_Xโ‚€_pos, log_Xโ‚€_gt
ฯƒ ๐Ÿ“–CompOpโ€”
ฯƒnorm ๐Ÿ“–CompOp
2 mathmath: Criterion.ฯƒnorm_ln_eq, Criterion.ฯƒnorm_M_ge_ฯƒnorm_L'_mul

Theorems

NameKindAssumesProvesValidatesDepends On
L_eq_prod ๐Ÿ“– โš ๏ธmathematicalโ€”Lโ€”โ€”
L_not_HA_of_ge ๐Ÿ“–mathematicalโ€”HighlyAbundant
L
โ€”Criterion.not_highlyAbundant
exists_p_primes ๐Ÿ“–โ€”Xโ‚€โ€”โ€”hsqrt_ge
hlog
Dusart.proposition_5_4
exists_q_primes ๐Ÿ“–โ€”Xโ‚€โ€”โ€”hsqrt_ge
hlog
Dusart.proposition_5_4
final_comparison ๐Ÿ“–โ€”โ€”โ€”โ€”โ€”
hlog ๐Ÿ“–โ€”Xโ‚€โ€”โ€”hsqrt_ge
log_Xโ‚€_gt
hsqrt_ge ๐Ÿ“–โ€”Xโ‚€โ€”โ€”โ€”
hฮต_pos ๐Ÿ“–โ€”Xโ‚€โ€”โ€”hlog
inv_cube_log_sqrt_le ๐Ÿ“–โ€”Xโ‚€โ€”โ€”log_Xโ‚€_gt
inv_n_add_sqrt_ge ๐Ÿ“–โ€”Xโ‚€โ€”โ€”โ€”
inv_n_pow_3_div_2_le ๐Ÿ“–โ€”Xโ‚€โ€”โ€”โ€”
log_L_eq_psi ๐Ÿ“– โš ๏ธmathematicalโ€”Lโ€”โ€”
log_Xโ‚€_gt ๐Ÿ“–mathematicalโ€”Xโ‚€โ€”โ€”
log_Xโ‚€_pos ๐Ÿ“–mathematicalโ€”Xโ‚€โ€”log_Xโ‚€_gt
pq_ratio_ge ๐Ÿ“–mathematicalXโ‚€exists_p_primes
exists_q_primes
โ€”hฮต_pos
exists_p_primes
exists_q_primes
prod_epsilon_ge ๐Ÿ“–โ€”โ€”โ€”โ€”โ€”
prod_epsilon_le ๐Ÿ“–โ€”โ€”โ€”โ€”โ€”
prod_p_ge ๐Ÿ“–mathematicalXโ‚€exists_p_primesโ€”exists_p_primes
hlog
prod_q_ge ๐Ÿ“–mathematicalXโ‚€exists_q_primesโ€”exists_q_primes
hlog
hฮต_pos
psi_eq_prod ๐Ÿ“– โš ๏ธโ€”โ€”โ€”โ€”โ€”

Lcm.Criterion

Definitions

NameCategoryTheorems
L' ๐Ÿ“–CompOp
9 mathmath: ฯƒnorm_ln_eq, val_two_M_ge_L', L_eq_prod_q_mul_L', L'_pos, val_two_L', q_not_dvd_L', val_p_L', ฯƒnorm_M_ge_ฯƒnorm_L'_mul, ln_eq
M ๐Ÿ“–CompOp
7 mathmath: Ln_div_M_lt, val_p_M_ge_two, val_two_M_ge_L', M_pos, M_lt, ฯƒnorm_M_ge_ฯƒnorm_L'_mul, Ln_div_M_gt
m ๐Ÿ“–CompOp
2 mathmath: prod_q_eq, m_pos
mk' ๐Ÿ“–CompOpโ€”
n ๐Ÿ“–CompOp
15 mathmath: Ln_div_M_lt, ฯƒnorm_ln_eq, not_highlyAbundant, L_eq_prod_q_mul_L', h_crit, h_ord_3, h_ord_1, hn, L_pos, val_two_L', M_lt, prod_q_dvd_L, ฯƒnorm_M_ge_ฯƒnorm_L'_mul, ln_eq, Ln_div_M_gt
p ๐Ÿ“–CompOp
13 mathmath: prod_q_eq, hp, p_gt_two, r_le, Ln_div_M_lt, val_p_M_ge_two, prod_p_le_prod_q, h_crit, hp_mono, h_ord_2, h_ord_1, val_p_L', ฯƒnorm_M_ge_ฯƒnorm_L'_mul
q ๐Ÿ“–CompOp
14 mathmath: prod_q_eq, hq, Ln_div_M_lt, q_gt_two, prod_p_le_prod_q, ฯƒnorm_ln_eq, L_eq_prod_q_mul_L', h_crit, h_ord_3, h_ord_2, hq_mono, q_not_dvd_L', prod_q_dvd_L, ln_eq
r ๐Ÿ“–CompOp
3 mathmath: prod_q_eq, r_le, r_ge

Theorems

NameKindAssumesProvesValidatesDepends On
L'_pos ๐Ÿ“–mathematicalโ€”L'โ€”L_pos
prod_q_dvd_L
hq
L_eq_prod_q_mul_L' ๐Ÿ“–mathematicalโ€”Lcm.L
n
q
L'
โ€”L'.eq_1
prod_q_dvd_L
L_pos ๐Ÿ“–mathematicalโ€”Lcm.L
n
โ€”โ€”
Ln_div_M_gt ๐Ÿ“–mathematicalโ€”Lcm.L
n
M
โ€”M_pos
M_lt
Ln_div_M_lt ๐Ÿ“–mathematicalโ€”Lcm.L
n
M
p
q
โ€”hq
L_eq_prod_q_mul_L'
L'_pos
prod_q_eq
hp
m_pos
prod_p_le_prod_q
r_le
M_lt ๐Ÿ“–mathematicalโ€”M
Lcm.L
n
โ€”r_ge
L'_pos
prod_q_eq
L_eq_prod_q_mul_L'
M_pos ๐Ÿ“–mathematicalโ€”Mโ€”hp
m_pos
L'_pos
h_crit ๐Ÿ“–mathematicalโ€”q
p
n
โ€”โ€”
h_ord_1 ๐Ÿ“–mathematicalโ€”n
p
โ€”โ€”
h_ord_2 ๐Ÿ“–mathematicalโ€”p
q
โ€”โ€”
h_ord_3 ๐Ÿ“–mathematicalโ€”q
n
โ€”โ€”
hn ๐Ÿ“–mathematicalโ€”nโ€”โ€”
hp ๐Ÿ“–mathematicalโ€”pโ€”โ€”
hp_mono ๐Ÿ“–mathematicalโ€”pโ€”โ€”
hq ๐Ÿ“–mathematicalโ€”qโ€”โ€”
hq_mono ๐Ÿ“–mathematicalโ€”qโ€”โ€”
ln_eq ๐Ÿ“–mathematicalโ€”Lcm.L
n
q
L'
โ€”L'.eq_1
hq
hq_mono
h_ord_3
m_pos ๐Ÿ“–mathematicalโ€”mโ€”prod_p_le_prod_q
hp
not_highlyAbundant ๐Ÿ“–mathematicalโ€”Lcm.HighlyAbundant
Lcm.L
n
โ€”not_highlyAbundant_2
ฯƒnorm_M_ge_ฯƒnorm_L'_mul
not_highlyAbundant_1 ๐Ÿ“–mathematicalLcm.ฯƒnorm
M
p
q
Lcm.L
n
Lcm.HighlyAbundantโ€”M_pos
L_pos
Lcm.ฯƒnorm.eq_1
Lcm.ฯƒ.eq_1
hq
prod_p_le_prod_q
Ln_div_M_lt
M_lt
not_highlyAbundant_2 ๐Ÿ“–mathematicalLcm.ฯƒnorm
M
L'
p
n
Lcm.HighlyAbundant
Lcm.L
โ€”not_highlyAbundant_1
Lcm.ฯƒnorm.eq_1
Lcm.ฯƒ.eq_1
L'_pos
hq
prod_p_le_prod_q
h_crit
ฯƒnorm_ln_eq
p_gt_two ๐Ÿ“–mathematicalโ€”pโ€”hp
h_ord_1
h_ord_2
h_ord_3
hp_mono
hq_mono
prod_p_le_prod_q ๐Ÿ“–mathematicalโ€”p
q
โ€”h_crit
hq
prod_q_dvd_L ๐Ÿ“–mathematicalโ€”q
Lcm.L
n
โ€”hq
hq_mono
h_ord_3
prod_q_eq ๐Ÿ“–mathematicalโ€”q
p
m
r
โ€”โ€”
q_gt_two ๐Ÿ“–mathematicalโ€”qโ€”h_ord_2
hq_mono
q_not_dvd_L' ๐Ÿ“–mathematicalโ€”q
L'
โ€”h_ord_1
hp_mono
h_ord_2
hq_mono
hq
ln_eq
r_ge ๐Ÿ“–mathematicalโ€”rโ€”hp
hq
h_ord_2
hq_mono
r_le ๐Ÿ“–mathematicalโ€”r
p
โ€”hp
val_p_L' ๐Ÿ“–mathematicalโ€”L'
p
โ€”hp
h_ord_1
hp_mono
h_ord_2
h_ord_3
hq_mono
L'_pos
hq
L_eq_prod_q_mul_L'
val_p_M_ge_two ๐Ÿ“–mathematicalโ€”M
p
โ€”hp
m_pos
L'_pos
val_p_L'
val_two_L' ๐Ÿ“–mathematicalโ€”L'
n
โ€”prod_q_dvd_L
hn
hq
q_gt_two
val_two_M_ge_L' ๐Ÿ“–mathematicalโ€”M
L'
โ€”hp
m_pos
L'_pos
ฯƒnorm_M_ge_ฯƒnorm_L'_mul ๐Ÿ“–mathematicalโ€”Lcm.ฯƒnorm
M
L'
p
n
โ€”M_pos
L'_pos
M.eq_1
val_p_L'
val_two_M_ge_L'
hn
val_two_L'
hp
p_gt_two
hp_mono
ฯƒnorm_ln_eq ๐Ÿ“–mathematicalโ€”Lcm.ฯƒnorm
Lcm.L
n
L'
q
โ€”hq
hq_mono
q_not_dvd_L'
L_eq_prod_q_mul_L'
L'_pos

---

โ† Back to Index