Lcm
๐ Source: PrimeNumberTheoremAnd/Lcm.lean
Statistics
Lcm
Definitions
| Name | Category | Theorems |
|---|---|---|
Criterion ๐ | CompData | โ |
HighlyAbundant ๐ | MathDef | |
L ๐ | CompOp | |
Xโ ๐ | CompOp | |
ฯ ๐ | CompOp | โ |
ฯnorm ๐ | CompOp |
Theorems
Lcm.Criterion
Definitions
| Name | Category | Theorems |
|---|---|---|
L' ๐ | CompOp | 9 mathmath:ฯnorm_ln_eq, val_two_M_ge_L', L_eq_prod_q_mul_L', L'_pos, val_two_L', q_not_dvd_L', val_p_L', ฯnorm_M_ge_ฯnorm_L'_mul, ln_eq |
M ๐ | CompOp | 7 mathmath:Ln_div_M_lt, val_p_M_ge_two, val_two_M_ge_L', M_pos, M_lt, ฯnorm_M_ge_ฯnorm_L'_mul, Ln_div_M_gt |
m ๐ | CompOp | |
mk' ๐ | CompOp | โ |
n ๐ | CompOp | 15 mathmath:Ln_div_M_lt, ฯnorm_ln_eq, not_highlyAbundant, L_eq_prod_q_mul_L', h_crit, h_ord_3, h_ord_1, hn, L_pos, val_two_L', M_lt, prod_q_dvd_L, ฯnorm_M_ge_ฯnorm_L'_mul, ln_eq, Ln_div_M_gt |
p ๐ | CompOp | 13 mathmath:prod_q_eq, hp, p_gt_two, r_le, Ln_div_M_lt, val_p_M_ge_two, prod_p_le_prod_q, h_crit, hp_mono, h_ord_2, h_ord_1, val_p_L', ฯnorm_M_ge_ฯnorm_L'_mul |
q ๐ | CompOp | 14 mathmath:prod_q_eq, hq, Ln_div_M_lt, q_gt_two, prod_p_le_prod_q, ฯnorm_ln_eq, L_eq_prod_q_mul_L', h_crit, h_ord_3, h_ord_2, hq_mono, q_not_dvd_L', prod_q_dvd_L, ln_eq |
r ๐ | CompOp |
Theorems
---