Documentation Verification Report

AuxResults

📁 Source: PrimeNumberTheoremAnd/Mathlib/NumberTheory/Sieve/AuxResults.lean

Statistics

MetricCount
Definitions0
Theoremsprod_factors_of_mult, conv_lambda_sq_larger_sum, div_mult_of_dvd_squarefree, inv_antitoneOn_Icc, inv_antitoneOn_pos, inv_sub_antitoneOn_Icc, inv_sub_antitoneOn_gt, ite_sum_zero, log_add_one_le_sum_inv, log_le_sum_inv, moebius_inv_dvd_lower_bound, moebius_inv_dvd_lower_bound', moebius_inv_dvd_lower_bound_real, multiplicative_zero_of_zero_dvd, sum_inv_le_log, sum_inv_le_log_real, sum_over_dvd_ite, sum_pow_cardDistinctFactors_div_self_le_log_pow, sum_pow_cardDistinctFactors_le_self_mul_log_pow
19
Total19

ArithmeticFunction.IsMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
prod_factors_of_mult 📖

Aux

Theorems

NameKindAssumesProvesValidatesDepends On
conv_lambda_sq_larger_sum 📖ite_sum_zero
div_mult_of_dvd_squarefree 📖
inv_antitoneOn_Icc 📖inv_sub_antitoneOn_Icc
inv_antitoneOn_pos 📖inv_sub_antitoneOn_gt
inv_sub_antitoneOn_Icc 📖inv_sub_antitoneOn_gt
inv_sub_antitoneOn_gt 📖
ite_sum_zero 📖
log_add_one_le_sum_inv 📖inv_antitoneOn_Icc
log_le_sum_inv 📖log_add_one_le_sum_inv
moebius_inv_dvd_lower_bound 📖
moebius_inv_dvd_lower_bound' 📖moebius_inv_dvd_lower_bound
sum_over_dvd_ite
moebius_inv_dvd_lower_bound_real 📖moebius_inv_dvd_lower_bound'
multiplicative_zero_of_zero_dvd 📖
sum_inv_le_log 📖inv_sub_antitoneOn_Icc
sum_inv_le_log_real 📖sum_inv_le_log
sum_over_dvd_ite 📖
sum_pow_cardDistinctFactors_div_self_le_log_pow 📖sum_inv_le_log_real
sum_pow_cardDistinctFactors_le_self_mul_log_pow 📖sum_pow_cardDistinctFactors_div_self_le_log_pow

---

← Back to Index