Documentation Verification Report

SelbergBounds

📁 Source: PrimeNumberTheoremAnd/Mathlib/NumberTheory/Sieve/SelbergBounds.lean

Statistics

MetricCount
DefinitionsCompletelyMultiplicative
1
Theoremsapply_pow, id, isMultiplicative, pdiv, pmul, zeta, squarefree_dvd_pow, boundingSum_ge_log, boundingSum_ge_sum, prime_dvd_primorial_iff, primorial_squarefree, prodDistinctPrimes_squarefree, prod_factors_one_div_compMult_ge, prod_factors_sum_pow_compMult, prod_primes_dvd_of_dvd, rem_sum_le_of_const, selbergBoundingSum_ge_sum_div, siftedSum_eq, sqrt_le_self, zeta_lt_self_of_prime, zeta_pos_of_prime
21
Total22

Sieve

Definitions

NameCategoryTheorems
CompletelyMultiplicative 📖MathDef
2 mathmath: CompletelyMultiplicative.id, CompletelyMultiplicative.zeta

Theorems

NameKindAssumesProvesValidatesDepends On
boundingSum_ge_log 📖mathematicalSelbergSieve.selbergBoundingSumboundingSum_ge_sum
Aux.log_le_sum_inv
boundingSum_ge_sum 📖mathematicalSelbergSieve.selbergBoundingSumselbergBoundingSum_ge_sum_div
CompletelyMultiplicative.pdiv
CompletelyMultiplicative.zeta
CompletelyMultiplicative.id
prime_dvd_primorial_iff 📖
primorial_squarefree 📖prodDistinctPrimes_squarefree
prodDistinctPrimes_squarefree 📖
prod_factors_one_div_compMult_ge 📖CompletelyMultiplicativeCompletelyMultiplicative.isMultiplicative
CompletelyMultiplicative.apply_pow
prod_factors_sum_pow_compMult 📖CompletelyMultiplicativeCompletelyMultiplicative.isMultiplicative
prod_primes_dvd_of_dvd 📖
rem_sum_le_of_const 📖Aux.sum_pow_cardDistinctFactors_le_self_mul_log_pow
selbergBoundingSum_ge_sum_div 📖mathematicalCompletelyMultiplicativeSelbergSieve.selbergBoundingSumprod_factors_sum_pow_compMult
SelbergSieve.selbergTerms_apply
prod_factors_one_div_compMult_ge
Nat.squarefree_dvd_pow
prod_primes_dvd_of_dvd
sqrt_le_self
siftedSum_eq 📖prime_dvd_primorial_iff
sqrt_le_self 📖
zeta_lt_self_of_prime 📖
zeta_pos_of_prime 📖

Sieve.CompletelyMultiplicative

Theorems

NameKindAssumesProvesValidatesDepends On
apply_pow 📖Sieve.CompletelyMultiplicative
id 📖mathematicalSieve.CompletelyMultiplicative
isMultiplicative 📖Sieve.CompletelyMultiplicative
pdiv 📖Sieve.CompletelyMultiplicative
pmul 📖Sieve.CompletelyMultiplicative
zeta 📖mathematicalSieve.CompletelyMultiplicative

Sieve.Nat

Theorems

NameKindAssumesProvesValidatesDepends On
squarefree_dvd_pow 📖

---

← Back to Index