Documentation Verification Report

MediumPNT

📁 Source: PrimeNumberTheoremAnd/MediumPNT.lean

Statistics

MetricCount
DefinitionsChebyshevPsi, I₁, I₂, I₃, I₃₇, I₄, I₅, I₆, I₇, I₈, I₉, LogDerivZetaHasBound, LogDerivZetaIsHoloSmall, SmoothedChebyshev, SmoothedChebyshevIntegrand
15
TheoremsBddAboveOnRect, psi_eq_sum_range, I1Bound, I2Bound, I3Bound, I4Bound, I5Bound, I6Bound, I6I4, I7Bound, I7I3, I8Bound, I8I2, I9Bound, I9I1, IBound_aux1, LogDerivZetaBoundedAndHolo, LogDerivativeDirichlet, MediumPNT, MellinOfSmooth1cExplicit, SmoothedChebyshevClose, SmoothedChebyshevClose_aux, SmoothedChebyshevDirichlet, SmoothedChebyshevDirichlet_aux_integrable, SmoothedChebyshevDirichlet_aux_tsum_integral, SmoothedChebyshevPull1, SmoothedChebyshevPull1_aux_integrable, SmoothedChebyshevPull2, SmoothedChebyshevPull2_aux1, ZetaBoxEval, ae_volume_of_contains_compl_singleton_zero, dlog_riemannZeta_bdd_on_vertical_lines, dlog_riemannZeta_bdd_on_vertical_lines_explicit, integral_evaluation, interval_membership, log_pow_over_xsq_integral_bounded, one_add_inv_log, poisson_kernel_integrable, realDiff_of_complexDiff, smoothedChebyshevIntegrand_conj, verticalIntegral_split_three_finite, verticalIntegral_split_three_finite', x_ε_to_inf
43
Total58

Chebyshev

Theorems

NameKindAssumesProvesValidatesDepends On
psi_eq_sum_range 📖

(root)

Definitions

NameCategoryTheorems
ChebyshevPsi 📖CompOp
I₁ 📖CompOp
3 mathmath: I1Bound, I9I1, SmoothedChebyshevPull1
I₂ 📖CompOp
3 mathmath: I2Bound, I8I2, SmoothedChebyshevPull1
I₃ 📖CompOp
3 mathmath: SmoothedChebyshevPull2, I7I3, I3Bound
I₃₇ 📖CompOp
2 mathmath: SmoothedChebyshevPull2, SmoothedChebyshevPull1
I₄ 📖CompOp
3 mathmath: I4Bound, I6I4, SmoothedChebyshevPull2
I₅ 📖CompOp
2 mathmath: SmoothedChebyshevPull2, I5Bound
I₆ 📖CompOp
3 mathmath: I6I4, SmoothedChebyshevPull2, I6Bound
I₇ 📖CompOp
3 mathmath: I7Bound, SmoothedChebyshevPull2, I7I3
I₈ 📖CompOp
3 mathmath: I8Bound, I8I2, SmoothedChebyshevPull1
I₉ 📖CompOp
3 mathmath: I9Bound, I9I1, SmoothedChebyshevPull1
LogDerivZetaHasBound 📖MathDef
1 mathmath: LogDerivZetaBoundedAndHolo
LogDerivZetaIsHoloSmall 📖MathDef
SmoothedChebyshev 📖CompOp
4 mathmath: SmoothedChebyshevPull3, SmoothedChebyshevClose, SmoothedChebyshevDirichlet, SmoothedChebyshevPull1
SmoothedChebyshevIntegrand 📖CompOp
3 mathmath: I1NewIntegrandBound, smoothedChebyshevIntegrand_conj, SmoothedChebyshevPull1_aux_integrable

Theorems

NameKindAssumesProvesValidatesDepends On
BddAboveOnRect 📖HolomorphicOn
I1Bound 📖mathematicalI₁MellinOfSmooth1b
triv_bound_zeta
logt_gt_one
SmoothedChebyshevPull1_aux_integrable
poisson_kernel_integrable
integral_evaluation
I2Bound 📖mathematicalLogDerivZetaHasBoundI₂MellinOfSmooth1b
IBound_aux1
logt_gt_one
mul_le_mul₃
one_add_inv_log
I3Bound 📖mathematicalLogDerivZetaHasBoundI₃MellinOfSmooth1b
log_pow_over_xsq_integral_bounded
logt_gt_one
I4Bound 📖mathematicalLogDerivZetaIsHoloSmallI₄MellinOfSmooth1b
I5Bound 📖mathematicalLogDerivZetaIsHoloSmallI₅MellinOfSmooth1b
I6Bound 📖mathematicalLogDerivZetaIsHoloSmallI₆I4Bound
I6I4
I6I4 📖mathematicalI₆
I₄
intervalIntegral_conj
smoothedChebyshevIntegrand_conj
I7Bound 📖mathematicalLogDerivZetaHasBoundI₇I3Bound
I7I3
I7I3 📖mathematicalI₇
I₃
intervalIntegral_conj
smoothedChebyshevIntegrand_conj
I8Bound 📖mathematicalLogDerivZetaHasBoundI₈I2Bound
I8I2
I8I2 📖mathematicalI₈
I₂
intervalIntegral_conj
smoothedChebyshevIntegrand_conj
I9Bound 📖mathematicalI₉I1Bound
I9I1
I9I1 📖mathematicalI₉
I₁
smoothedChebyshevIntegrand_conj
IBound_aux1 📖
LogDerivZetaBoundedAndHolo 📖mathematicalLogDerivZetaHasBound
HolomorphicOn
LogDerivZetaBndUnif
LogDerivZetaHolcLargeT
LogDerivativeDirichlet 📖
MediumPNT 📖SmoothExistence
SmoothedChebyshevClose
MellinOfSmooth1cExplicit
LogDerivZetaBoundedAndHolo
LogDerivZetaHolcSmallT
I1Bound
I2Bound
I3Bound
I5Bound
I7Bound
I8Bound
I9Bound
I4Bound
I6Bound
x_ε_to_inf
logt_gt_one
Smooth1MellinDifferentiable
SmoothedChebyshevPull1
SmoothedChebyshevPull2
MellinOfSmooth1cExplicit 📖mathematicalSmooth1MellinOfSmooth1c
SmoothedChebyshevClose 📖mathematicalSmoothedChebyshevSmooth1Properties_above
Smooth1LeOne
Smooth1Nonneg
SmoothedChebyshevDirichlet
SmoothedChebyshevClose_aux
SmoothedChebyshevClose_aux 📖Chebyshev.psi_eq_sum_range
SmoothedChebyshevDirichlet 📖mathematicalSmoothedChebyshev
Smooth1
logt_gt_one
LogDerivativeDirichlet
SmoothedChebyshevDirichlet_aux_tsum_integral
Smooth1MellinConvergent
SmoothedChebyshevDirichlet_aux_integrable
Smooth1ContinuousAt
SmoothedChebyshevDirichlet_aux_integrable 📖mathematicalSmooth1MellinOfSmooth1b
Smooth1MellinDifferentiable
SmoothedChebyshevDirichlet_aux_tsum_integral 📖mathematicalSmooth1Smooth1MellinDifferentiable
SmoothedChebyshevDirichlet_aux_integrable
SmoothedChebyshevPull1 📖mathematicalHolomorphicOnSmoothedChebyshev
I₁
I₂
I₃₇
I₈
I₉
Smooth1
logt_gt_one
verticalIntegral_split_three
SmoothedChebyshevPull1_aux_integrable
rectangle_mem_nhds_iff
ResidueTheoremOnRectangleWithSimplePole'
Smooth1MellinDifferentiable
riemannZetaLogDerivResidueBigO
ResidueMult
SmoothedChebyshevPull1_aux_integrable 📖mathematicalSmoothedChebyshevIntegranddlog_riemannZeta_bdd_on_vertical_lines
SmoothedChebyshevDirichlet_aux_integrable
differentiableAt_deriv_riemannZeta
realDiff_of_complexDiff
SmoothedChebyshevPull2 📖mathematicalHolomorphicOn
SmoothedChebyshevIntegrand
I₃₇
I₃
I₄
I₅
I₆
I₇
interval_membership
HolomorphicOn.vanishesOnRectangle
verticalIntegral_split_three_finite'
SmoothedChebyshevPull2_aux1
Smooth1MellinDifferentiable
realDiff_of_complexDiff
SmoothedChebyshevPull2_aux1 📖HolomorphicOn
ZetaBoxEval 📖MellinOfSmooth1c
ae_volume_of_contains_compl_singleton_zero 📖
dlog_riemannZeta_bdd_on_vertical_lines 📖dlog_riemannZeta_bdd_on_vertical_lines_explicit
dlog_riemannZeta_bdd_on_vertical_lines_explicit 📖dlog_riemannZeta_bdd_on_vertical_lines_generalized
integral_evaluation 📖ae_volume_of_contains_compl_singleton_zero
interval_membership 📖
log_pow_over_xsq_integral_bounded 📖logt_gt_one
one_add_inv_log 📖logt_gt_one
poisson_kernel_integrable 📖
realDiff_of_complexDiff 📖
smoothedChebyshevIntegrand_conj 📖mathematicalSmoothedChebyshevIntegrandderiv_riemannZeta_conj
riemannZeta_conj
verticalIntegral_split_three_finite 📖mathematicalVIntegral
verticalIntegral_split_three_finite' 📖mathematicalVIntegralverticalIntegral_split_three_finite
x_ε_to_inf 📖

---

← Back to Index