Documentation Verification Report

PerronFormula

📁 Source: PrimeNumberTheoremAnd/PerronFormula.lean

Statistics

MetricCount
Definitionsf
1
Theoremscpow_eq_exp_log_ofReal, cpow_neg_eq_inv_pow_ofReal_pos, eventually_bddAbove, lowerUIntegral_eq_zero, upperUIntegral_eq_zero, one_div_const_add_sq, bddAbove_square_of_tendsto, contourPull, contourPull3, diffBddAtNegOne, diffBddAtZero, f_mul_eq_f, formulaGtOne, formulaLtOne, horizontal_integral_isBigO, integralPosAux, integralPosAux', integralPosAux'_of_le, integral_one_div_const_add_sq_pos, isHolomorphicOn, isIntegrable, isTheta, isTheta_uniformlyOn_uIcc, isTheta_uniformlyOn_uIoc, keyIdentity, map_conj, residueAtNegOne, residueAtZero, residuePull1, residuePull2, sPlusOneNeZero, tendsto_zero_Lower, tendsto_zero_Upper, vertIntBound, vertIntBoundLeft, RectangleIntegral_tendsTo_LowerU, RectangleIntegral_tendsTo_UpperU, RectangleIntegral_tendsTo_VerticalIntegral, limitOfConstant, limitOfConstantLeft, tendsto_rpow_atTop_nhds_zero_of_norm_gt_one, tendsto_rpow_atTop_nhds_zero_of_norm_lt_one, verticalIntegral_eq_verticalIntegral, verticalIntegral_sub_verticalIntegral_eq_squareIntegral, zeroTendstoDiff
45
Total46

Complex

Theorems

NameKindAssumesProvesValidatesDepends On
cpow_eq_exp_log_ofReal 📖
cpow_neg_eq_inv_pow_ofReal_pos 📖

Filter.Tendsto

Theorems

NameKindAssumesProvesValidatesDepends On
eventually_bddAbove 📖

Perron

Definitions

NameCategoryTheorems
f 📖CompOp
17 mathmath: residuePull1, formulaLtOne, vertIntBoundLeft, tendsto_zero_Upper, horizontal_integral_isBigO, f_mul_eq_f, contourPull, residueAtNegOne, map_conj, isTheta_uniformlyOn_uIoc, isTheta_uniformlyOn_uIcc, isHolomorphicOn, vertIntBound, residueAtZero, tendsto_zero_Lower, isTheta, isIntegrable

Theorems

NameKindAssumesProvesValidatesDepends On
bddAbove_square_of_tendsto 📖mathematicalSquareFilter.Tendsto.eventually_bddAbove
Complex.nhds_hasBasis_square
square_subset_square
contourPull 📖mathematicalVerticalIntegral
f
verticalIntegral_eq_verticalIntegral
isHolomorphicOn
tendsto_zero_Lower
tendsto_zero_Upper
isIntegrable
contourPull3 📖mathematicalVerticalIntegral'contourPull
diffBddAtNegOne 📖mathematicalSquarebddAbove_square_of_tendsto
keyIdentity
diffBddAtZero 📖mathematicalSquarebddAbove_square_of_tendsto
keyIdentity
f_mul_eq_f 📖mathematicalfComplex.cpow_neg_eq_inv_pow_ofReal_pos
formulaGtOne 📖mathematicalVerticalIntegral'residuePull1
residuePull2
contourPull3
vertIntBoundLeft
tendsto_rpow_atTop_nhds_zero_of_norm_gt_one
limitOfConstantLeft
formulaLtOne 📖mathematicalVerticalIntegral
f
contourPull
integralPosAux
vertIntBound
tendsto_rpow_atTop_nhds_zero_of_norm_lt_one
limitOfConstant
horizontal_integral_isBigO 📖mathematicalfisTheta_uniformlyOn_uIoc
integralPosAux 📖integralPosAux'
integralPosAux' 📖integralPosAux'_of_le
integralPosAux'_of_le 📖integral_one_div_const_add_sq_pos
Integrable.one_div_const_add_sq
integral_one_div_const_add_sq_pos 📖
isHolomorphicOn 📖mathematicalHolomorphicOn
f
isIntegrable 📖mathematicalfisHolomorphicOn
map_conj
isTheta
isTheta 📖mathematicalfAsymptotics.isTheta_of_isThetaUniformly
isTheta_uniformlyOn_uIcc
isTheta_uniformlyOn_uIcc 📖mathematicalfContinuousOn.const_isThetaUniformlyOn_isCompact
Asymptotics.isLittleO_const_snd_atBot
Asymptotics.isLittleO_const_snd_atTop
ContinuousOn.const_isBigOUniformlyOn_isCompact
isTheta_uniformlyOn_uIoc 📖mathematicalfisTheta_uniformlyOn_uIcc
keyIdentity 📖
map_conj 📖mathematicalf
residueAtNegOne 📖mathematicalRectangleIntegral'
f
diffBddAtNegOne
mem_Rect
Square.eq_1
isHolomorphicOn
sPlusOneNeZero
square_mem_nhds
existsDifferentiableOn_of_bddAbove
ResidueTheoremOnRectangleWithSimplePole
residueAtZero 📖mathematicalRectangleIntegral'
f
diffBddAtZero
mem_Rect
Square.eq_1
isHolomorphicOn
square_mem_nhds
existsDifferentiableOn_of_bddAbove
ResidueTheoremOnRectangleWithSimplePole
residuePull1 📖mathematicalVerticalIntegral'
f
isHolomorphicOn
residueAtZero
verticalIntegral_sub_verticalIntegral_eq_squareIntegral
tendsto_zero_Lower
tendsto_zero_Upper
isIntegrable
VerticalIntegral'.eq_1
RectangleIntegral'.eq_1
residuePull2 📖mathematicalVerticalIntegral'isHolomorphicOn
residueAtNegOne
verticalIntegral_sub_verticalIntegral_eq_squareIntegral
tendsto_zero_Lower
tendsto_zero_Upper
isIntegrable
VerticalIntegral'.eq_1
RectangleIntegral'.eq_1
sPlusOneNeZero 📖
tendsto_zero_Lower 📖mathematicalfhorizontal_integral_isBigO
tendsto_zero_Upper 📖mathematicalfhorizontal_integral_isBigO
vertIntBound 📖mathematicalVerticalIntegral
f
integralPosAux
vertIntBoundLeft 📖mathematicalVerticalIntegral'
f
integralPosAux'

Perron.HolomorphicOn

Theorems

NameKindAssumesProvesValidatesDepends On
lowerUIntegral_eq_zero 📖mathematicalHolomorphicOnLowerUIntegralRectangleIntegral_tendsTo_LowerU
HolomorphicOn.vanishesOnRectangle
mem_Rect
upperUIntegral_eq_zero 📖mathematicalHolomorphicOnUpperUIntegralRectangleIntegral_tendsTo_UpperU
HolomorphicOn.vanishesOnRectangle
mem_Rect

Perron.Integrable

Theorems

NameKindAssumesProvesValidatesDepends On
one_div_const_add_sq 📖Perron.integral_one_div_const_add_sq_pos

(root)

Theorems

NameKindAssumesProvesValidatesDepends On
RectangleIntegral_tendsTo_LowerU 📖mathematicalRectangleIntegral
LowerUIntegral
RectangleIntegral_tendsTo_UpperU 📖mathematicalRectangleIntegral
UpperUIntegral
RectangleIntegral_tendsTo_VerticalIntegral 📖mathematicalRectangleIntegral
VerticalIntegral
limitOfConstant 📖
limitOfConstantLeft 📖
tendsto_rpow_atTop_nhds_zero_of_norm_gt_one 📖tendsto_rpow_atTop_nhds_zero_of_norm_lt_one
tendsto_rpow_atTop_nhds_zero_of_norm_lt_one 📖
verticalIntegral_eq_verticalIntegral 📖mathematicalHolomorphicOnVerticalIntegralzeroTendstoDiff
RectangleIntegral_tendsTo_VerticalIntegral
verticalIntegral_sub_verticalIntegral_eq_squareIntegral 📖mathematicalHolomorphicOnVerticalIntegral
RectangleIntegral
Complex.nhds_hasBasis_square
square_subset_square
RectangleIntegral_tendsTo_VerticalIntegral
RectanglePullToNhdOfPole'
square_mem_nhds
RectSubRect'
zeroTendstoDiff 📖

---

← Back to Index