Documentation Verification Report

RosserSchoenfeldPrime

šŸ“ Source: PrimeNumberTheoremAnd/RosserSchoenfeldPrime.lean

Statistics

MetricCount
DefinitionsL, Stieltjes, meisselMertensConstant, mertensConstant
4
Theoremsbound_deriv, deriv_eq, integrableOn_deriv, integrableOn_deriv_inv, integrableOn_deriv_inv_div_log, intervalIntegrable_inv_log_pow, intervalIntegral_eq, ioiIntegrable_inv_log_pow, ioiIntegral_tendsto_zero, leftLim_theta_succ, log_div_log_eq, meisselMertensConstant_identity, mertens_first_theorem, mertens_first_theorem', mertens_second_theorem, mertens_second_theorem', pnt, pntBigO, pre_413, pre_413_measure_inter, summable_pre413, support_pre413, theorem_12, theta_one, theta_succ_sub, theta_two, interval_add_Ioi
27
Total31
āš ļø With sorrytheorem_12
1

RS_prime

Definitions

NameCategoryTheorems
L šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
bound_deriv šŸ“–ā€”ā€”ā€”ā€”ā€”
deriv_eq šŸ“–ā€”ā€”ā€”ā€”log_div_log_eq
integrableOn_deriv šŸ“–ā€”ā€”ā€”ā€”pnt
ioiIntegrable_inv_log_pow
bound_deriv
intervalIntegrable_inv_log_pow
integrableOn_deriv_inv šŸ“–ā€”ā€”ā€”ā€”pnt
ioiIntegrable_inv_log_pow
integrableOn_deriv_inv_div_log šŸ“–ā€”ā€”ā€”ā€”integrableOn_deriv
intervalIntegrable_inv_log_pow šŸ“–ā€”ā€”ā€”ā€”ā€”
intervalIntegral_eq šŸ“–ā€”ā€”ā€”ā€”log_div_log_eq
ioiIntegrable_inv_log_pow šŸ“–ā€”ā€”ā€”ā€”intervalIntegrable_inv_log_pow
ioiIntegral_tendsto_zero šŸ“–ā€”ā€”ā€”ā€”intervalIntegral.interval_add_Ioi
leftLim_theta_succ šŸ“–ā€”ā€”ā€”ā€”ā€”
log_div_log_eq šŸ“–ā€”ā€”ā€”ā€”ā€”
meisselMertensConstant_identity šŸ“–mathematical—meisselMertensConstant—eq_415
integrableOn_deriv_inv_div_log
meisselMertensConstant.eq_1
mertens_first_theorem šŸ“–mathematical—mertensConstant—eq_420
pnt
ioiIntegral_tendsto_zero
integrableOn_deriv_inv
mertens_first_theorem' šŸ“–ā€”ā€”ā€”ā€”pnt
eq_420
integrableOn_deriv_inv
mertens_second_theorem šŸ“–mathematical—meisselMertensConstant—meisselMertensConstant_identity
pnt
ioiIntegral_tendsto_zero
integrableOn_deriv_inv_div_log
mertens_second_theorem' šŸ“–ā€”ā€”ā€”ā€”pnt
meisselMertensConstant_identity
integrableOn_deriv_inv_div_log
pnt šŸ“–ā€”ā€”ā€”ā€”pntBigO
pntBigO šŸ“–ā€”ā€”ā€”ā€”MediumPNT
pre_413 šŸ“–mathematical—θ.Stieltjes—summable_pre413
support_pre413
leftLim_theta_succ
theta_succ_sub
pre_413_measure_inter
pre_413_measure_inter šŸ“–mathematical—θ.Stieltjes—theta_two
leftLim_theta_succ
theta_one
theta_succ_sub
summable_pre413 šŸ“–mathematical—θ.Stieltjes——
support_pre413 šŸ“–mathematical—θ.Stieltjes——
theorem_12 šŸ“– āš ļømathematical—c₀——
theta_one šŸ“–ā€”ā€”ā€”ā€”ā€”
theta_succ_sub šŸ“–ā€”ā€”ā€”ā€”ā€”
theta_two šŸ“–ā€”ā€”ā€”ā€”ā€”

RS_prime.Īø

Definitions

NameCategoryTheorems
Stieltjes šŸ“–CompOp
4 mathmath: RS_prime.pre_413, RS_prime.support_pre413, RS_prime.pre_413_measure_inter, RS_prime.summable_pre413

(root)

Definitions

NameCategoryTheorems
meisselMertensConstant šŸ“–CompOp
3 mathmath: Dusart.theorem_5_6, RS_prime.mertens_second_theorem, RS_prime.meisselMertensConstant_identity
mertensConstant šŸ“–CompOp
2 mathmath: Dusart.theorem_5_7, RS_prime.mertens_first_theorem

intervalIntegral

Theorems

NameKindAssumesProvesValidatesDepends On
interval_add_Ioi šŸ“–ā€”ā€”ā€”ā€”ā€”

---

← Back to Index