Documentation Verification Report

SecondarySummary

šŸ“ Source: PrimeNumberTheoremAnd/SecondarySummary.lean

Statistics

MetricCount
DefinitionsTable_2, Table_1
2
Theoremshas_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, corollary_1_3, theorem_1_4, has_prime_in_interval, corollary_1, corollary_2, theorem_1, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval_2, has_prime_in_interval, has_prime_in_interval
18
Total20
āš ļø With sorryhas_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, theorem_1_4, has_prime_in_interval, corollary_1, theorem_1, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval, has_prime_in_interval_2, has_prime_in_interval, has_prime_in_interval
16

CarneiroEtAl2019RH

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

CullyHugill2021

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

Dudek2014

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

Dudek2015RH

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

GourdonDemichel2004

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

JY

Theorems

NameKindAssumesProvesValidatesDepends On
corollary_1_3 šŸ“–mathematical—EĻ€.classicalBound—FKS2.corollary_22
theorem_1_4 šŸ“– āš ļømathematical—EĻ€.vinogradovBound——

KadiriLumley

Definitions

NameCategoryTheorems
Table_2 šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematicalTable_2HasPrimeInInterval——

PT

Definitions

NameCategoryTheorems
Table_1 šŸ“–CompOp—

Theorems

NameKindAssumesProvesValidatesDepends On
corollary_1 šŸ“– āš ļømathematicalTable_1EĪø.classicalBound——
corollary_2 šŸ“–mathematical—EĻ€.classicalBound—FKS2.corollary_22
theorem_1 šŸ“– āš ļømathematicalTable_1Eψ.classicalBound
Eψ.numericalBound
——

PrimeGaps2014

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

PrimeGaps2024

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

RHPrimeInterval2002

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

RamareSaouter2003

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——
has_prime_in_interval_2 šŸ“– āš ļømathematical—HasPrimeInInterval——

Schoenfeld1976

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

Trudgian2016

Theorems

NameKindAssumesProvesValidatesDepends On
has_prime_in_interval šŸ“– āš ļømathematical—HasPrimeInInterval——

---

← Back to Index